Westgard Rules

The Nitty Gritty of Quality Control

Sarah Dawson
MS, MT(ASCP)SH

HPTN Central Lab
What is QC?

Why do we do it?
Calculations

- Mean = \(\bar{X} = \frac{\sum X_i}{n} \)
 - \(\sum \) = Sum of
 - \(X_i \) = individual measurements
 - \(n \) = number of measurements
Calculations

- Standard Deviation

\[S = \sqrt{\frac{\sum (X_i - \bar{X})^2}{n-1}} \]
Calculations

- Coefficient of Variation

\[CV = \left(\frac{S}{\bar{X}} \right) \times 100 \]

signifies random error or imprecision
Historically

- **95% Confidence limit**
 - 95 of every 100 normal patient’s results would be within +/- 2 S of the mean
 - 1 of every 20 controls could be out of range and that is to be expected – the analytical run would be rejected
 - This rule is called the 1_{2s} rule and gives a high level of false rejections or false alarms
Rates of False Rejection

- With 1 control – false rejection rate is 5%
- With 2 controls – false rejection rate is 9%
- With 3 controls – false rejection rate is 14%
False rejections can become very expensive.

To diminish the false rejection rate without compromising quality, we need to change the way we look at or analyze control data.
Westgard Rules

- Development of ‘multi-rule’ QC
 - Rules that are used in conjunction with each other to provide a high level of error detection while reducing the incidence of false rejection
 - There are different combinations of rules depending on the number of controls being used, the total allowable error and your instrumentation
Typical Rule Combinations

- For controls run in multiples of 2 (typically chemistry)
 - $1_{3S} / 2_{2S} / R_{4S} / 4_{1S} / 10_X$

- For controls run in multiples of 3 (typically hematology, coagulation, blood gases)
 - $1_{3S} / 2_{of3_{2S}} / R_{4S} / 3_{1S} / 12_X$
Rules

- 1_{2s} – refers to the historical rule of plus/minus 2_s from the mean
 - with multi-rules: a warning rule to trigger careful inspection of control data

- 1_{3s} - refers to plus/minus 3_s
 - a run is rejected when a single control exceeds the mean $\pm 3_s$

- 2_{2s} – reject the run when 2 consecutive controls exceed the mean $\pm 2_s$
Rules

- R_{4s} – when 1 control in a group exceeds the mean $\pm 2s$ and another control exceeds the mean in the other direction by $2s$
 - reject run

- 4_{1s} – when 4 consecutive control measurements are on one side of the mean either $\pm 1s$
 - Warning rule or a rejection rule depending on the accuracy of your instrument
Rules

- $10_x - 10$ consecutive control measurements fall on one side of the mean
 - If within 1 s, warning
 - If between 1 and 2 s, reject

- $2_{of3_{2s}} -$ reject the run when 2 of 3 controls exceed the mean $\pm 2_s$
Rules

- 9_x – reject when 9 consecutive control measurements fall on one side of the mean

- 7_T – reject when seven control measurements trend in the same direction, either higher or lower
Random Errors

- Random Errors – these errors affect the reproducibility or precision of a test system.
 - Usually 1_{3s} or R_{4s} rules
 - can be due to variations in line voltage, pipettes, dispensers, contamination, volume dispensed, bubbles in lines of reagents, etc.
Systematic Errors

- Systematic Errors – (bias, shifts and trends) – these errors affect the accuracy of the test system.

 - Usually 2_{2s}, 4_{1s}, or 10_x rules
 - can be due to calibration lot changes, temperature changes in incubator unit, light source deterioration, electronics, reagent lot changes, etc.
Accuracy –vs- Precision

- Accuracy – how close you are to the correct value
- Precision – how close together your results are to each other
Define Your QC Protocol

- Each lab needs to define its’ QC protocol based on the number of controls used, the accuracy of the instrumentation, the total allowable error, etc.
- How do you interpret the results of the controls?
- What do you do based on those results?
QC Protocol - example

1. Statistical QC Procedure
 a) Use a 1_{2s} as a warning rule and the $1_{3S} / 2_{2S} / R_{4S} / 4_{1S} / 10_x$ as rejection rules with 2 control measurements

2. Analyze control materials
 a) Analyze 1 sample of each level of control.
QC Protocol

3. Interpretation of warning rules
 a) If both control results are within 2s, report the results. If one control exceeds a 2s limit, follow flow chart and if any rule is violated, reject run.

4. Within run inspection
 a) Inspect control results by applying rules: 1_{3s} in each run and 2_{2s} and R_{4s} across levels.
QC Protocol

5. Inspect controls across runs
 a) Apply the 2_2s rule with each level across the last two runs.
 b) Apply the 4_1s rule within each control level across the last 4 runs and across the last 2 runs of both levels.

6. If none of the rules are violated, accept the run.
Problem Solving

- If a run is out of control, investigate the process and correct the problem.

 - **Do not automatically repeat the control!**

What do you need to do to investigate the process?

- Determine the type of error based on your rule violation (random or systematic)
- Relate the type of error to the potential cause
- Inspect the testing process and consider common factors on multi-test systems
- Relate causes to recent changes
- Verify the solution and document the corrective action
To help us investigate the problem, we need to look at our QC / QA Records

What records do we need?
Instrument Information & Validation

- Reportable range (linearity)
- Precision and Accuracy studies
- Analytical sensitivity / specificity
- Reference range
- Proficiency testing results
- Reagent logs
- Problem logs
QC Documents / Logs

- Preventative maintenance
 - Scheduled and unscheduled
 - Reason for maintenance
 - Frequency and length of downtime
 - Signs of instrument deterioration

- Calibration and Calibration Verification
 - Lot numbers and expiry of calibrators, dates of calibration, reason for calibration/verification, and by whom

- Instrument function and temperature checks

- Previous Control runs

All of these documents can be helpful when investigating errors!
Why use Westgard Rules?

- We use Westgard Multi-rules to help us reduce costs while maintaining a high level of certainty that our analytical process is functioning properly.
- In other words to diminish the false rejection rate without compromising quality.
Questions???