CAPRISA 004 after Vienna: Advancing the tenofovir gel development agenda

Quarraisha Abdool Karim, PhD
Co-Chair HPTN
Associate Professor of Clinical Epidemiology, Columbia University
Adjunct Professor of Public Health, University of KwaZulu-Natal
Effectiveness and Safety of Tenofovir Gel, an Antiretroviral Microbicide, for the Prevention of HIV Infection in Women

Quarraisha Abdool Karim,1,2* Salim S. Abdool Karim,1,2,3* Janet A. Frohlich,1 Anneke C. Grobler,1 Cheryl Baxter,1 Leila E. Mansoor,1 Ayesha B. M. Kharsany,1 Senzeziwe Sibeko,1 Koleka P. Misana,1 Zaheen Omar,1 Tanuja N. Gengiah,1 Silvia Maarschalk,1 Natasha Arulappan,1 Mukelahule Mlotshwa,1 Lynn Morris,2 Douglas Taylor,3 on behalf of the CAPRISA 004 Trial Group†

The Centre for the AIDS Program of Research in South Africa (CAPRISA) 004 trial assessed the effectiveness and safety of a 1% vaginal gel formulation of tenofovir, a nucleotide reverse transcriptase inhibitor, for the prevention of HIV acquisition in women. A double-blind, randomized controlled trial was conducted comparing tenofovir gel (n = 445 women) with placebo gel (n = 444 women) in sexually
Summary of CAPRISA 004 findings

- No substantive safety concerns
- Proof of concept that tenofovir gel can prevent HSV-2 infection in women
 - 51% reduction in HSV-2
- Proof of concept that tenofovir gel can prevent HIV infection in women
 - 39% protection against HIV overall
 - 54% effective in women with high adherence

New hope and interest in microbicides and HIV prevention science
Changing the picture of HIV prevalence in pregnant women in rural S. Africa: Potential impact of tenofovir gel

<table>
<thead>
<tr>
<th>Age (in years)</th>
<th>2005 - 2009</th>
<th>2015 - 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤16</td>
<td>10.6%</td>
<td><2%</td>
</tr>
<tr>
<td>17-18</td>
<td>21.3%</td>
<td><2%</td>
</tr>
<tr>
<td>19-20</td>
<td>33.0%</td>
<td><5%</td>
</tr>
<tr>
<td>21-22</td>
<td>44.3%</td>
<td><5%</td>
</tr>
<tr>
<td>23-24</td>
<td>51.1%</td>
<td><10%</td>
</tr>
</tbody>
</table>
Reducing HIV in women with tenofovir gel

- Regulatory
- Access
- Implementation
- Enhancing effectiveness of tenofovir gel
Meeting regulatory requirements for licensure of tenofovir gel

• What is needed – not known

• Dialogue with regulators
 ▪ FDA (CONRAD), TIA (MCC)

• What do regulatory bodies need?
 ▪ FDA: CAPRISA 004 & VOICE
 Safety & drug interaction studies
 ▪ MCC: Full dossier submission (?FACTS 001)
 ▪ EMA: Not known yet

• Regulatory document submissions
 ▪ Clinical Study Report for CAPRISA 004
 ▪ Regulatory dossier
Access to tenofovir gel

• **Normative Guidance (& Co-ordination)**
 - WHO / UNAIDS
 - Aug 2010: stakeholder consultation
 - June 2011: preparing for guidelines

• **Advocacy**
 - UNAIDS, USAID, DST, AVAC, GCM, TAC
 - Involving health service providers

• **Manufacture in Africa**
 - ProPreven (TIA, CIPLAMedpro, CONRAD)
Informing Implementation

• Integrating tenofovir gel into health services
 ▪ Family planning clinic integration – CAPRISA 008
 ▪ Assessing patient choices (oral vs topical) – MTN 018

• Consequences of exposure to tenofovir gel
 ▪ Potential impact of drug resistance – CAPRISA 009
 ◦ Disease Progression & Treatment Outcomes

• Toolkit to help clinics implement tenofovir gel
 ▪ MACAIDS toolkit – part of CAPRISA 008

• Community level impact
 ▪ Changing the course of the HIV epidemic – CAPRISA 010
Enhancing Effectiveness of Tenofovir Gel

- Adherence

- Drug Levels for Protection – Angela Kashuba presentation

- Biology
 - Correlates of Risk of Infection
Adherence & effectiveness of tenofovir gel

<table>
<thead>
<tr>
<th># HIV</th>
<th>N</th>
<th>HIV incidence</th>
<th>Effect</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TFV</td>
<td>Placebo</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High adherers (>80% gel adherence)</td>
<td>36</td>
<td>336</td>
<td>4.2</td>
<td>9.3</td>
</tr>
<tr>
<td>Intermediate adherers (50-80% adherence)</td>
<td>20</td>
<td>181</td>
<td>6.3</td>
<td>10.0</td>
</tr>
<tr>
<td>Low adherers (<50% gel adherence)</td>
<td>41</td>
<td>367</td>
<td>6.2</td>
<td>8.6</td>
</tr>
</tbody>
</table>
Impact of CASP on HIV Effectiveness

<table>
<thead>
<tr>
<th></th>
<th>Before CASP (<01 Oct 08)</th>
<th>After CASP (>01 Oct 08)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detectable TNF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenofovir (N=387)</td>
<td>34.6% (n=136)</td>
<td>46.4% (n=306)</td>
</tr>
<tr>
<td>Placebo (N=387)</td>
<td>46.4% (n=306)</td>
<td></td>
</tr>
<tr>
<td># HIV infections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenofovir (N=418)</td>
<td>21</td>
<td>35</td>
</tr>
<tr>
<td>Placebo (N=410)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>HIV incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(per 100 women yrs)</td>
<td>7.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Tenofovir (N=418)</td>
<td>9.9</td>
<td>8.4</td>
</tr>
<tr>
<td>Placebo (N=410)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRR</td>
<td>0.75</td>
<td>0.57</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>25%</td>
<td>43%</td>
</tr>
<tr>
<td>CI (p-value)</td>
<td>-45;61 (p=0.37)</td>
<td>2.4, 69 (p=0.03)</td>
</tr>
</tbody>
</table>
Do raised cytokines increase the risk of HIV acquisition?

<table>
<thead>
<tr>
<th></th>
<th>No ↑ cytokines</th>
<th>Elevated Cytokines</th>
</tr>
</thead>
<tbody>
<tr>
<td># HIV infections</td>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td>Women-years</td>
<td>81.2</td>
<td>130.9</td>
</tr>
<tr>
<td>HIV Incidence (per 100 women-yrs)</td>
<td>9.9</td>
<td>20.6</td>
</tr>
<tr>
<td>IRR (95% CI)</td>
<td>2.1 (0.9 – 5.3)</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>
Impact of elevated cytokines on Tenofovir effectiveness

<table>
<thead>
<tr>
<th></th>
<th>No ↑ cytokines</th>
<th>Elevated Cytokines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLD tenofovir</td>
<td>Detectable tenofovir</td>
</tr>
<tr>
<td># HIV infections</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Women-years</td>
<td>24.5</td>
<td>33.6</td>
</tr>
<tr>
<td>HIV Incidence (per 100 women-yrs)</td>
<td>20.4</td>
<td>38.7</td>
</tr>
<tr>
<td>RR (95% CI)</td>
<td>-</td>
<td>1.8 (0.8-4.2)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.05</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Werner et al.
Women who acquire HIV have higher levels of innate immune activation

- Systemic cytokines
- NK cell activation
- Vaginal cytokine profile
- (CD8 T-cell degranulation)
- (Platelet counts)

What drives activation?
- NOT
 - NK cell maturation stage (CD57)
 - KIR (reportoire/expression distribution)
 - Microbial Translocation (LPS, sCD14, I-FABP)
 - HSV-2 infection
- ? Host genetic factors
- Other infections- microbiome characterisation
Summary

• CASP approach effective in enhancing adherence - increased product effectiveness
 • Adherence in low users remains a gap
• Higher levels of inflammation in the genital tract prior to HIV infection associated with higher HIV acquisition rates
 • Role of high levels of genital tract inflammation in facilitating breakthrough HIV infections in women using tenofovir gel
• Understanding immune mechanisms that drive activation?
 ▪ Host genetics
 ▪ Role of other infections - microbiome characterisation
 ▪ Role of other triggers – exogenous hormones, semen...
Acknowledgements

- **Financial support**: USAID & S African Dept of Science & Technology
- **Tenofovir & placebo gel**: Provided by CONRAD & Gilead Sciences
- **FHI Statistical & regulatory support**: S Cameron, D Sokal & D Taylor
- **Trial Oversight Committee**:
 - **CAPRISA**: Q Abdool Karim, SS Abdool Karim
 - **FHI**: W Cates, L Dorflinger, and D Taylor
 - **USAID**: L Claypool, J Manning, J Spieler
 - **CONRAD**: H Gabelnick
 - **LIFE/ab (TIA)**: B Okole, C Montague
 - **Gilead Sciences**: J Rooney, Howard Jaffe
- **DSMB members**: K Mayer (Chair), E Bukusi, K Dickson, C Lombard & S Self. Independent DSMB statistician: M Chen
- **FHI Study monitors**: S Combes, C. Katz, L McNeil & A Troxler
- **Research infrastructure & training**: US NIH’s CIPRA Program & the Columbia University - Southern African Fogarty Training Program
- Cate Hankins (UNAIDS),
- Tim Farley (WHO),
- David Stanton (USAID),
- Sharon Hillier (MTN),
- Helen Rees (FACTS)
- Leila Mansoor (Adherence) Jo-Ann Passmore (Cytokine), Vivek Naranbhai (NK Cell)
The CAPRISA 004 Trial Group

- Principal Investigators: Q Abdool Karim & SS Abdool Karim
- Site Directors: JA Frohlich, ABM Kharsany, KP Mlisana
- Project coordinators: C Baxter, LE Mansoor
- Site co-ordinators: NA Arulappan, S Maarschalk
- Assistant site co-ordinators: H Humphries, G Parker, J Richards, J Upton
- Study Gynaecologist: S Sibeko
- Clinicians: B Mdluli, N Miya, L Mtongana, N Naicker, Z Omar, D Sokal (FHI)
- Nurses: DD Chetty, F Dlamini, SD Gumede, Z Gumede, NE Khambule, N Langa, BT Madlala, N Madlala, N Mkhize, ZL Mkhize, M Mlotshwa, C Ndimande, N Ngcobo, C Ntshingila, B Phungula, TE Vumase
- Counsellors: NB Biyela, N Dladla, T Dlamini, CT Khwela, N Mayisela, MR Mlaba, J Mchunu, Z Msimango, D Nkosi, T Shange
- Pharmacists: L Chelini, TN Gengiah, A Gray, B Maharaj, GI Masinga, A Naidoo, M Upfold
- Pharmacist’s assistants: B Moodley, Y Naidoo, C Ngcobo, T Nzimande, L Zondi
- Statisticians: AC Grobler, D Taylor (FHI), L Werner, N Yende
- Data management: R Lallbahadur, M Mdladla, K Naidoo, T Nala, C Pillay, P Sikakane, T Zondo
- Quality assurance: T Govender, N Mvandaba, F van Loggerenberg, I van Middelkoop
- Laboratory: J Naicker, V Naranbhai, N Ndlovu, N Samsunder, S Sidhoo, P Tshabalala
- Behavioural Science: J Fisher (UConn), K MacQueen (FHI)
- Cohort co ordinators: LR Luthuli, F Ntombela
- Cohort administrators: PF Chonco, DP Magagula, PC Majola, T Ndlovu, L Ngobese, N Ngubane, NM Zwane
- Community outreach: N Bhengu, P Buthelezi, PD Lembethe, BF Mazibuko, SF Mdluli, WN Mkhize, SP Ndlovu, S Ngubane, RM Ogle, RB Xulu
- Administrative staff: N Amla, SA Barnabas, T Malembe, M Matthews, YT Miya, A Mqadi, S Panday, S Sibisi, B Zulu, M Swart,
The CAPRISA 004 Protocol Team gratefully acknowledges the dedication and commitment of the study participants without whom this study would not be possible.