Oral PrEP – New Drugs

Roy M. Gulick, MD, MPH
Chief, Division of Infectious Diseases
Professor of Medicine
Weill Medical College of Cornell University
New York City
Criteria for Oral PrEP

- Safe
- Penetrates target tissues
- Protects against HIV infection in tissues
- Long-lasting activity for convenient dosing
- Unique resistance profile or high barrier to resistance
- No significant drug-drug interactions
- Possibly, not a part of current rx regimens
- Affordable, easy to use and implement
Completed and Current Studies of Oral PrEP

14 studies and projects, up to 16 countries
32,000+ participants

TDF +/- FTC
Antiretroviral Drugs: 2012

Nucleoside/tide RTIs (NRTIs)
- zidovudine (ZDV, AZT)
- didanosine (ddI)
- stavudine (d4T)
- lamivudine (3TC)
- abacavir (ABC)
- emtricitabine (FTC)
- tenofovir (TDF)

NNRTIs
- nevirapine (NVP)
- delavirdine (DLV)
- efavirenz (EFV)
- etravirine (ETR)
- rilpivirine (RPV)

Protease Inhibitors (PIs)
- saquinavir (SQV)
- ritonavir (RTV)
- indinavir (IDV)
- nelfinavir (NFV)
- lopinavir/r (LPV/r)
- atazanavir (ATV)
- fosamprenavir (FPV)
- tipranavir (TPV)
- darunavir (DRV)

Entry Inhibitors (EIs)
- enfuvirtide (T-20, fusion inh)
- maraviroc (MVC, CCR5 inh)

Integrase Inhibitors (IIs)
- raltegravir (RAL)
Antiretroviral Drugs: 2012

nucleoside/tide RTIs (NRTIs)
- lamivudine (3TC)
- emtricitabine (FTC)
- tenofovir (TDF)

entry inhibitors (EIs)
- maraviroc (MVC, CCR5 inh)

integrase inhibitors (IIs)
- raltegravir (RAL)
Investigational ART (partial list)

<table>
<thead>
<tr>
<th>Phase</th>
<th>NRTI</th>
<th>NNRTI</th>
<th>PI</th>
<th>EI</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>elvitegravir</td>
</tr>
<tr>
<td>Phase 2</td>
<td>apricitabine</td>
<td>BILR 355</td>
<td>lersivirine</td>
<td>BMS-663068</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAPD</td>
<td></td>
<td>UC-781</td>
<td>cenicriviroc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dexelvucitabine</td>
<td></td>
<td></td>
<td>PF-232798</td>
<td></td>
</tr>
<tr>
<td></td>
<td>festinavir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GS-7340</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1/2</td>
<td>amdoxovir</td>
<td>GSK 2248761</td>
<td>TMC 310911</td>
<td>HGS004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>elvucitabine</td>
<td></td>
<td></td>
<td>ibalizumab</td>
<td></td>
</tr>
<tr>
<td>Phase 1</td>
<td>RPV-LA</td>
<td>CTP-298</td>
<td>CTP-518</td>
<td>SCH-532706</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RDEA 806</td>
<td>CTP-518</td>
<td>PPL-100</td>
<td>VIR-576</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPI-256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BI 224436</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INH-1001</td>
<td></td>
</tr>
</tbody>
</table>
MVC for PrEP: Advantages

- HIV entry inhibitor – CCR5 antagonist
- FDA-approved 2007; safety profile X 5+ years
- Achieves high tissue levels
 - 3X higher in vaginal secretions Dumond JAIDS 2009
 - 8-26X higher in rectal tissue Brown JID 2011
- Once-daily dosing possible Rosario Brit J Clin Pharm 2008
- Drug resistance is uncommon
- Used uncommonly for HIV treatment
- Prevented HIV infection in animal model Neff PLoS One 2010
MVC for PrEP: Disadvantages

- Limited clinical safety data in HIV-uninfected individuals
- Increased pathogenicity with ∆32 deletion of some viral infections (e.g., West Nile virus)
- Other theoretical safety risks
- Not labeled for once-daily dosing
- Some potential for drug-drug interactions
- Not active against X4 virus
HPTN 069/ACTG 5305: NEXT-PrEP

Novel Examination of Therapies for PrEP

• Design: Phase II, 4-arm, 12-site, study
• Study pop: 400 at-risk HIV-negative MSM
• Study Treatment (blinded, placebo-controlled):
 • MVC monotherapy
 • MVC + FTC
 • MVC + TDF
 • TDF + FTC (control)
• Duration: 48 weeks
• Primary endpoint: Grade ≥3 toxicities; time to study treatment discontinuation

Amendment:
Cohort of 200 women planned
RAL for PrEP: Advantages

- HIV integrase inhibitor
- FDA-approved 2007; safety profile X 5+ years
- Safety/tolerability as PEP
 Mayer JAIDS 2012
- Achieves tissue levels
 - ~93% in vaginal secretions
 Jones PK Workshop 2009
 - 1.5-7X higher in GALT
 Patterson PK Workshop 2012
- Few drug-drug interactions
- Prevented HIV infection in animal model
 Neff PLoS One 2010
RAL for PrEP: Disadvantages

- Twice-daily dosing (as treatment)
- Low barrier to drug resistance
- “Preferred drug” in HIV treatment guidelines; used commonly
- No current PrEP clinical studies(?)
Animal Study: MVC and RAL PrEP

- Humanized mouse model (RAG-hu mice)
- Orally administered MVC or RAL daily X 7 days (6 mice/group)
- Vaginal HIV-1 challenge on day 4

RPV-LA for PrEP: Advantages

- HIV NNRTI
- FDA-approved 2011; safety profile X 2+ years
- RPV-LA single-dose clinical study (N=33)
 Jackson CROI 2012 #35
- RPV-LA achieves tissue levels
 - 10X higher in LN (animals) v’ant Klooster AAC 2010
 - CVF and RT =, VT lower, RF much lower
 Else PK Workshop 2012
- RPV-LA once-monthly dosing possible
 Baert Eur J Pharm Biopharm 2009
- Pilot combo safety study with ‘744 as PrEP
 enrolling (N=40) www.clinicaltrials.gov
RPV-LA for PrEP: Disadvantages

- Investigational formulation (phase 1)
- Very limited safety clinical data
- Some drug-drug interactions
- Low barrier to drug resistance; cross-resistance to other NNRTI
- “Alternative drug” in HIV treatment guidelines; used commonly
‘744 for PrEP: Advantages

- HIV integrase inhibitor
- **Clinical data** (N=48 healthy volunteers)
 Min ICAAC 2009 #H-1228
- Long half-life (30 hours); infrequent parenteral dosing possible
 Min ICAAC 2009 #H-1228
- Higher barrier to resistance than other II
- Few drug-drug interactions
- Pilot combo safety study with RPV-LA as PrEP enrolling (N=40)
 www.clinicaltrials.gov
‘744 for PrEP: Disadvantages

- Investigational drug and formulation (phase 2a)
- Very limited clinical safety data
- No available tissue PK data (?)
- Other integrase inhibitors (RAL, EVG) used commonly in HIV treatment
Ibalizumab for PrEP: Advantages

- HIV entry inhibitor -- CD4 attachment antagonist
- Monoclonal antibody
- Clinical phase 2b studies in HIV-infected individuals completed *Khanlou ICAAC 2011 #H2794b*
- Drug resistance not expected
- No drug-drug interactions
- Pilot phase 1 safety study of three-doses, given once-weekly SC, as PrEP in progress (N=24) www.clinicaltrials.gov
Ibalizumab for PrEP: Disadvantages

- Investigational drug – phase 1-2
- Limited safety data in HIV-uninfected individuals
- Theoretical safety risks
- No tissue PK data (?)
- Parenteral administration once every 1-4 weeks
Summary: New PrEP Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism</th>
<th>Dosing Route</th>
<th>Dosing Frequency</th>
<th>PrEP Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVC</td>
<td>CCR5 antagonist</td>
<td>Oral</td>
<td>Once daily</td>
<td>Phase 2</td>
</tr>
<tr>
<td>RAL</td>
<td>II</td>
<td>Oral</td>
<td>Twice daily</td>
<td>?</td>
</tr>
<tr>
<td>RPV-LA</td>
<td>NNRTI</td>
<td>Injectable, SC</td>
<td>Once monthly</td>
<td>Phase 1 pilot</td>
</tr>
<tr>
<td>‘744</td>
<td>II</td>
<td>Injectable, SC</td>
<td>Once monthly (or less)</td>
<td>Phase 1 pilot</td>
</tr>
<tr>
<td>ibalizumab</td>
<td>CD4 attachment inhibitor</td>
<td>Injectable, SC</td>
<td>Once every 1-4 weeks</td>
<td>Phase 1 pilot</td>
</tr>
</tbody>
</table>
THANK YOU