The Cost-effectiveness of Treatment as Prevention: Analysis of the HPTN 052 Trial

Rochelle Walensky, MD, MPH Eric Ross Nagalingeswaran Kumarasamy, MBBS, PhD Robin Wood, FCM, MMed, DTM&H Farzad Noubary, PhD A. David Paltiel, PhD, MBA Yoriko Nakamura Sheela Godbole, MD Mina Hosseinipour, MD, MPH James Hakim, MD Johnstone Kumwenda, FRCP Joseph Makhema, MB, ChB, FRCP Lisa Mills, MD, MSc Ravindre Panchia, BSc, MBBCh

Ian Sanne, MBBCh, FCP, DTM&H Milton Weinstein, PhD Elena Losina, PhD Ken Mayer, MD Beatriz Grinsztejn, MD, PhD Jose Pilotto, MD, PhD Suwat Chariyalertsak, MD, DrPH Breno Santos, MD Ying Chen, PhD Lei Wang, PhD Xin Li, PhD Marybeth McCauley, MPH Theresa Gamble, PhD Susan Eshleman, MD, PhD Estelle Piwowar-Manning, BS MT Leslie Cottle, BA Irving Hoffman, PA, MPH Joe Eron, MD Joel Gallant, MD, MPH Susan Swindells, MD Taha Taha, MBBS, PhD Karin Nielsen-Saines, MD, MPH David Celentano, ScD, MHS Max Essex, DVM, PhD Vanessa Elharrar, MD, PhD David Burns, MD, MPH George R. Seage III, DSc, MPH Myron Cohen, MD Kenneth Freedberg, MD, MSc

Supported by NIAID R01 AI058736 and HPTN 052

Prevention of HIV-1 Infection with Early Antiretroviral Therapy

Myron S. Cohen, M.D., Ying Q. Chen, Ph.D., Marybeth McCauley, M.P.H., Theresa Gamble, Ph.D., Mina C. Hosseinipour, M.D., Nagalingeswaran Kumarasamy, M.B., B.S., James G. Hakim, M.D., Johnstone Kumwenda, F.R.C.P., Beatriz Grinsztejn, M.D., Jose H.S. Pilotto, M.D., Sheela V. Godbole, M.D., Sanjay Mehendale, M.D., Suwat Chariyalertsak, M.D., Breno R. Santos, M.D., Kenneth H. Mayer, M.D., Irving F. Hoffman, P.A., Susan H. Eshleman, M.D., Estelle Piwowar-Manning, M.T., Lei Wang, Ph.D., Joseph Makhema, F.R.C.P., Lisa A. Mills, M.D., Guy de Bruyn, M.B., B.Ch., Ian Sanne, M.B., B.Ch., Joseph Eron, M.D., Joel Gallant, M.D., Diane Havlir, M.D., Susan Swindells, M.B., B.S., Heather Ribaudo, Ph.D., Vanessa Elharrar, M.D., David Burns, M.D., Taha E. Taha, M.B., B.S., Karin Nielsen-Saines, M.D., David Celentano, Sc.D., Max Essex, D.V.M., and Thomas R. Fleming, Ph.D., for the HPTN 052 Study Team*

Early ART compared to delayed ART conferred a 96% relative reduction in linked HIV transmissions among serodiscordant couples

Cohen et al. NEJM 2011

Objective Collaboration: HPTN 052/CEPAC-International

- To project the cost-effectiveness of early compared to delayed ART for treatment and prevention in serodiscordant couples
 - We conducted analyses for two countries, South Africa, and India to assess regional differences in value

Methods: CEPAC-International Model

- CEPAC-International Model
 - Mathematical model of HIV natural history and treatment
 - Clinical and resource utilization data from South Africa and India
 - Cohort and ART efficacy parameters from HPTN 052 trial

Methods: Transmission Module in CEPAC

- Projects transmission events from index cases
 - Allows for transmission between 1° and outside partners
 - Accounts for 1st- and 2nd-order transmissions from the index case
 - Flexible structure allows input variation in:
 - Duration of partnerships
 - Activity outside primary partnerships
 - Transmission by viral load

Methods: Two Strategies

- 1) Delayed ART (CD4 <250/µl)
- 2) Early ART (at presentation)

- Evaluate outcomes in:
 - Clinical benefit, cost and transmissions
 - 5-year and lifetime horizons

Model Input Parameters: Cohort, Treatment, and Transmission

Parameter	Input
Mean CD4 (cells/µL)	449
48-wk virologic suppression	92%
Loss to follow-up rate (/100 py)	3.4
Average partners (/mo)	1.011
Transmission rate (/100 py)	0.103-1.483

Model Input Parameters: Costs (2011 US\$)

	South Africa	India
ART (/mo)	13	11
OI treatment	300-1,000	40-300
Routine care	20-200	10-30
per capita GDP*	8,100	1,400

*WHO thresholds:

"Very cost-effective": <1x *per capita* GDP "Cost-effective": <3x *per capita* GDP

¹WHO Global Price Reporting Mechanism

Model Input Parameters: Costs (2011 US\$)

	South Africa	India
ART (/mo)	13	11
OI treatment	300-1,000	40-300
Routine care	20-200	10-30
per capita GDP*	8,100	1,400

*WHO thresholds:

"Very cost-effective": <1x *per capita* GDP "Cost-effective": <3x *per capita* GDP

Results: Survival for South Africa

Results: Transmission Rates, 5 yrs, South Africa

Years since presentation-to-care

Results: Cost-effectiveness, 5 yrs, South Africa

	Life expectancy* (years)	Costs (USD 2011)	ICER [†] (\$/YLS)
Delayed ART	4.3	4,850	
Early ART	4.6	4,830	Cost-saving

*Of 5.0 possible years [†]Including projected survival losses and cost increases associated with 1st- and 2nd-order transmissions

Results: Transmission Rates, Lifetime, South Africa

Results: Cumulative Transmissions, South Africa

Results: Cost-effectiveness, Lifetime, South Africa

	Life expectancy (years)	Costs (USD 2011)	ICER† (\$/YLS)
Delayed ART	13.3	15,970	
Early ART	15.2	16,320	530

[†]Including projected survival losses and cost increases associated with 1st- and 2nd-order transmissions

per capita GDP for South Africa: \$8,100

Results: Cost-effectiveness, India

	Life expectancy (years)	Costs (USD 2011)	ICER [†] (\$/YLS)
<u>5-year horizon</u>			
Delayed ART	4.4*	1,810	
Early ART	4.6*	2,170	1,840
Lifetime horizon			
Delayed ART	14.2	6,840	
Early ART	15.8	7,840	530
*Of 5.0 possible years	per capita G	DP for India: \$1,4	400

[†]Including projected survival losses and cost increases associated with 1stand 2nd-order transmissions

Different Costs of HIV Care

*"Other care costs" include labs, routine care, OI prophylaxis, and treatment for HIV-related events

Sensitivity Analyses

Treatment and Cost

- Initial mean CD4
- ART starting criteria
- Loss to follow-up rates
- ART efficacy
- Long-term suppressive durability of ART
- OI incidence rates
- OI treatment and routine care costs

Transmission

- Duration of primary relationships
- Rate of new partner acquisition
- Acute infection transmissibility
- Acute infection duration

Sensitivity Analyses: Transmission

- <u>5-year horizon</u>: early ART greatly reduces transmissions compared to delayed ART
 - *Robust* to changes in all parameters examined
- <u>Lifetime horizon</u>: early ART moderately reduces cumulative transmissions compared to delayed ART
 - **Sensitive** to changes in ART efficacy and longterm durability of suppression

Sensitivity Analyses: Cost-effectiveness

- <u>5-year horizon</u>: early ART is cost-saving in South Africa and cost-effective in India
 - **Sensitive** to changes in all treatment- and costrelated parameters: variations made early ART very cost-effective in both settings
- <u>Lifetime horizon</u>: early ART is very cost-effective in both countries
 - *Robust* to changes in all parameters examined

Limitations

- Specific to the HPTN 052 trial; not necessarily generalizable to non-trial settings, or to individuals not in regular partnerships
- Excluded productivity and other non-medical benefits of transmission prevention
- Transmissions beyond 2nd-order from the index case excluded; likely have a minimal effect on cost-effectiveness results

Conclusions

- In serodiscordant couples with ART efficacy and behavior data from HPTN 052 – early ART will prevent transmissions in the short-term
- In South Africa, over the short term, early ART may be cost-saving
- Early ART for serodiscordant couples is very cost-effective, regardless of country, ART efficacy, or behavior

The Cost-effectiveness of Treatment as Prevention: Analysis of the HPTN 052 Trial

Rochelle Walensky, MD, MPH Eric Ross Nagalingeswaran Kumarasamy, MBBS, PhD Robin Wood, FCM, MMed, DTM&H Farzad Noubary, PhD A. David Paltiel, PhD, MBA Yoriko Nakamura Sheela Godbole, MD Mina Hosseinipour, MD, MPH James Hakim, MD Johnstone Kumwenda, FRCP Joseph Makhema, MB, ChB, FRCP Lisa Mills, MD, MSc Ravindre Panchia, BSc, MBBCh

Ian Sanne, MBBCh, FCP, DTM&H Milton Weinstein, PhD Elena Losina, PhD Ken Mayer, MD Beatriz Grinsztejn, MD, PhD Jose Pilotto, MD, PhD Suwat Chariyalertsak, MD, DrPH Breno Santos, MD Ying Chen, PhD Lei Wang, PhD Xin Li, PhD Marybeth McCauley, MPH Theresa Gamble, PhD Susan Eshleman, MD, PhD Estelle Piwowar-Manning, BS MT Leslie Cottle, BA Irving Hoffman, PA, MPH Joe Eron, MD Joel Gallant, MD, MPH Susan Swindells, MD Taha Taha, MBBS, PhD Karin Nielsen-Saines, MD, MPH David Celentano, ScD, MHS Max Essex, DVM, PhD Vanessa Elharrar, MD, PhD David Burns, MD, MPH George R. Seage III, DSc, MPH Myron Cohen, MD Kenneth Freedberg, MD, MSc

Supported by NIAID R01 AI058736 and HPTN 052