Guidance for the management of “discordant/discrepant” HIV testing results – HPTN 083 and 084

Raphael J. Landovitz MD MSc, Protocol Chair HPTN 083
Sinead Delany-Moretlwe, MBBCh, PhD, Protocol Chair HPTN 084
Susan Eshleman MD PhD – HPTN Laboratory Center
February 7, 2023 – Version 2.2

Expert Consultants
Myron S. Cohen MD - University of North Carolina, Chapel Hill, HPTN Co-Principal Investigator
Beatriz Grinsztejn MD PhD – IPEC/Fiocruz Institute, Rio de Janeiro, Brazil
Mina Hosseinipour MD MPH – UNC Malawi Project, Lilongwe, Malawi
Aida Asmelash, MD/MPH – FHI360
Estelle Piwowar-Manning – HPTN Laboratory Center
Sheryl Zwerski RN PhD – NIH Division of AIDS

Protocol consultants:
Scott Rose – FHI360
Marybeth McCauley – FHI360
Jennifer Farrior – FHI360

Note: The list of consultants who provided input for the original guidance document is provided at the end of this file.
Summary of key updates

Key changes to the guidelines document include:

- New requirements for pre-approval for HIV DNA testing (this testing is not available/performed in the OLE)
- Guidance for repeat HIV RNA testing
- Guidance for HIV discriminatory/confirmatory testing
- Guidance for stopping CAB based on HIV RNA screening test results (OLE only)
- Guidance for starting ART based on HIV RNA screening test results (OLE only)

Background

When providing PrEP, serial monitoring for HIV infection is important to ensure patient/participant safety, to avoid administration of PrEP agents after infection, and to reduce emergence of drug-resistant HIV. When using long-acting PrEP agents, prompt ART initiation likely will reduce the risk for emergence and/or accumulation of additional drug-resistance mutations.

Clinical trial data suggest that on-going TDF/FTC PrEP use after occult/undiagnosed HIV infection may delay or reduce the antibody response to HIV infection, making it difficult to detect and/or confirm HIV infection.\(^1\)\(^-\)\(^4\) In one report, viral replication was suppressed by a median of 1.5 log\(_{10}\) copie/mL\(^5\). In some cases, HIV RNA is undetectable in this setting\(^6\), further complicating HIV diagnosis. Case reports have documented HIV seroconversion despite adherence to TDF/FTC PrEP; some of these infections occurred after exposure to highly-resistant virus\(^2\) or after high-inoculum exposure.\(^6\),\(^7\) In at least one case, nascent infection was only unmasked after discontinuation of TDF/FTC PrEP. However, discontinuation of PrEP in high-risk populations is not without risk, since HIV infection may occur in the absence of ongoing potent HIV prevention agents.

HPTN 083 and 084 demonstrated that daily oral TDF/FTC and CAB-LA are both highly effective for HIV prevention. While CAB-LA was superior to TDF/FTC for preventing infection, characterization of HIV infections in the setting of recent cabotegravir exposure demonstrated significant and prolonged suppression of viral replication with substantial delays in anti-HIV antibody production that led to substantial delays in site detection of infection in many cases. In many cases, discordant/discrepant HIV test results were obtained when the sites first detected the possibility of HIV infection. These effects often persisted for several months or longer, even after discontinuing CAB-LA injections, reflecting the long-half life and potency of this drug. In some cases, HIV RNA fell below the level of detection even using a single copy RNA assay, and a positive discriminatory test was not obtained during >6 months of follow-up.

A nuanced and pragmatic approach for HIV diagnosis is needed in these on-going trials to minimize risk to participants who have evidence of possible HIV infection (e.g., an isolated reactive HIV screening test result). Standardized approaches to HIV testing and counseling are needed for consistent clinical management and messaging of results, and to maintain the integrity of the studies. Laboratory procedures must be used that maximize the ability to discriminate between false positive test results and true (atypical) infections. Distinguishing between these scenarios is not always straightforward. The problem with false positive test results has been extensively discussed.\(^8\),\(^-\)\(^14\) Individuals who are considered to have false positive test results should be allowed to continue study products (oral cabotegravir, CAB-LA or TDF/FTC), depending on operational feasibility. Individuals who are confirmed to be infected or
are likely to be infected based on available laboratory results should be offered fully-suppressive antiretroviral treatment (ART) selected based on HIV genotyping and/or prior PrEP agent exposure.

Considerations

All HIV tests/assays have some false positive test results. The positive predictive value of a reactive result is dependent on the pre-test probability of true infection. In most settings, this would be most impacted by the HIV prevalence/incidence in the population. However, in the presence of a highly effective PrEP agents, the positive predictive value of some HIV tests may be significantly lower than anticipated.

In settings where TDF/FTC PrEP is used and HIV test results may be atypical early in infection, temporary discontinuation of TDF/FTC should lead to an increase in viral replication with increased antibody levels, allowing detection/confirmation of HIV infection. In one case where diagnosis was complicated by viral suppression by TDF/FTC PrEP, HIV RNA was detected 3 weeks after TDF/FTC withdrawal. Since the half-lives of TDF and FTC are short, short-term product holds can be used to “unmask” possible HIV infections with a limited risk for increasing drug-resistance. Moreover, accumulating data confirm that ART with TXF/XTC with either DTG or BIC can still confer high rates of viral suppression even in the most extreme scenario where K65R and M184V complicate TXF/XTC PrEP breakthrough.

HIV diagnosis is more challenging when long-acting agents, such as CAB-LA, are used for PrEP. When infections occur in the setting of CAB-LA, atypical test results, including very low or undetectable HIV viral load, may persist for long periods, even after injections are discontinued. Data from HPTN 077 shows that CAB concentrations remain quantifiable in 42% of HIV-uninfected women and 13% of uninfected men 76 weeks after the last CAB-LA injection. In the absence of suppressive ART, viral “escape” or increases in HIV viral load in breakthrough infections is often associated with INSTI resistance. For this reason, long-term product holds to “unmask” possible HIV infection are not advisable in persons using CAB-LA PrEP. In this setting, the risks of discontinuing CAB-LA to avoid unnecessary drug exposure and minimize the risk of drug resistance must be balanced against the increased risk of incident infection off PrEP in populations that are at high risk for HIV acquisition; these issues must be weighed against initiation of life-long ART without a definitive diagnosis. The complex decisional balance requires shared decision making and a nuanced understanding of behaviors, virology, and pharmacology. As the optimal approach remains undefined, we favor a conservative approach erring on the side of early ART initiation in cases with discordant or contradictory HIV test results, with plans for future enrollment in research protocols that may evaluate the size of the HIV reservoir and/or provide opportunities for analytic treatment interruption (ATI) once CAB concentrations have declined.

Objective

There are currently no guidelines for managing unconfirmed HIV infection in clinical or research settings where PrEP is used for HIV prevention. The purpose of this document is to provide updated guidelines for HIV diagnosis in HPTN 083 and 084 for participants who have discordant/discrepant HIV tests, based on available data and expert opinion. This document focuses on HIV diagnosis in participants receiving TDF/FTC and cabotegravir PrEP (the two drugs used for PrEP in HPTN 083 and 084).

Possible etiologies of discordant/discrepant HIV test results
Possible causes of discordant/discrepant HIV test results in the setting of PrEP include:

1. False positive test results due to non-biologic causes (e.g., sample contamination, technical error, data errors)
2. False positive test results due to biologic causes (e.g., cross-reactivity of antibodies to other pathogens)
3. HIV infection acquired prior to PrEP initiation, suppressed/immunologically altered by PrEP agents
4. HIV infection acquired while on PrEP, suppressed/immunologically altered by PrEP agents, including:
 a. Generalized infection
 b. Compartmentalized infection (e.g., HIV infection localized to GALT)
5. Antibody responses to repeated HIV exposure (immunological priming), without true infection
6. Aborted (cured) HIV infection with an immunological footprint without viremia or a latent HIV proviral pool.

Protocol-Specified HIV Testing Algorithms

In HPTN 083 and 084, HIV testing at study sites includes use of HIV rapid tests, instrumented HIV antigen/antibody (Ag/Ab) combination tests, HIV discriminatory tests (e.g., the Geenius HIV ½ Confirmatory Assay), and HIV RNA tests. An ultrasensitive HIV DNA test, performed in real-time at the HPTN LC, has also been used in the blinded phase of the trials and the OLE1 phase of the trials to help determine HIV status in selected cases (see below). The locally-available assays and the algorithms used for HIV diagnosis vary among study sites, based on local HIV testing guidelines. For example, some African sites confirm HIV infection using two HIV rapid tests, while other sites use a discriminatory test to confirm HIV infection.

In the pre-OLE phases of the trials, study sites screened for HIV infection using one or two HIV rapid tests and an instrumented Ag/Ab test, using blood obtained by phlebotomy. In the OLE1 phase of the trials, the HIV testing algorithm was modified by the addition of an HIV RNA test with a limit of quantification of 50 copies/mL or less to screen for HIV infection at every study visit; this testing is in addition to the testing described in the HIV testing algorithm. In the OLE2 phase of the trials, HIV testing should follow local HIV testing guidelines.

In December 2021, CAB-LA was approved for prevention of sexual HIV transmission by the US FDA. The US FDA package insert includes these specifications for HIV testing:

> Individuals must be tested for HIV-1 infection prior to initiating APRETUDE…and with each subsequent injection….using a test approved or cleared by the FDA for the diagnosis of acute or primary HIV-1 infection. (see https://www.accessdata.fda.gov)

The following two assays are currently approved by the US FDA for diagnosis of acute or primary HIV-1 infection:

- Aptima HIV-1 Quant Dx Assay
- Cobas HIV-1/HIV-2 Qualitative Test

antiretroviral prophylaxis (oral PrEP or PEP in the past 3 months, CAB injection in the past 12 months). That algorithm includes HIV RNA screening with repeat HIV RNA testing for persons who have positive RNA tests with non-reactive Ag/Ab tests; the document recommends diagnosing HIV infection only if the repeat HIV RNA testing has HIV-1 RNA detected above the lower limit of HIV RNA detection.

HIV DNA testing

HIV DNA testing is used for HIV diagnosis in infants and offers another option for resolving HIV status in adults in some settings. Proviral HIV DNA can be detected and quantified using cell pellets. The ability of HIV DNA tests to confirm or exclude HIV infection in the setting of PrEP has not been evaluated. Detection of proviral DNA in the setting of PrEP requires use of highly-sensitive assays, since the viral reservoir in these settings may be much smaller than the viral reservoir in newly-infected infants or in adults with no PrEP use/exposure. In the blinded phase, post-unblinding, and OLE1 phase of HPTN 083 and 084, HIV DNA testing is performed in real-time at the HPTN LC to help resolve HIV status in selected cases using a highly sensitive assay developed for the HIV cure agenda. Data from the blinded phase of HPTN 083 and 084 demonstrates that DNA levels are very low in participants who were infected in the setting of CAB-LA PrEP. In these cases, the level of DNA was often below the limit of detection established for the highly-sensitive HIV DNA assay. The HPTN LC is evaluating results from HIV DNA testing in participants in the CAB arm with and without confirmed infection to evaluate the utility of this testing in this setting.

Going forward, the alias group should seek approval for HIV DNA testing before recommending this testing to study sites. Approval for HIV DNA testing must be obtained from the Protocol Chair and the HPTN LC PI. The Protocol Chair will be responsible for forwarding requests for approval for HIV DNA testing to the HPTN LC.

In the OLE2 phase of HPTN 083 and HPTN 084, all HIV testing will be performed using local testing algorithms. HIV DNA testing at Johns Hopkins University will not be available during the OLE2 phase of these studies. PBMC samples should not be prepared/stored once participants transition to OLE2.

HIV RNA screening

As noted above, the HIV testing algorithm in the OLE1 phase of the trials includes an HIV RNA test with a limit of quantification of 50 copies/mL or less to screen for HIV infection at every study visit. If an equivocal RNA is obtained (RNA detected <LLOD/LLOQ*), the assay should be repeated at the next study visit. Repeat HIV RNA testing should not be performed using the original sample with the equivocal test result. Stored samples should not be used for site HIV testing without approval by the HPTN LC.

*Note:
LLOD: lower limit of detection (for qualitative assays)
LLOQ: lower limit of quantification (for quantitative assays)

HIV discriminatory antibody testing

The package insert for the Geenius HIV 1/2 Confirmatory Assay indicates that this assay is intended for use as an additional test to confirm the presence of antibodies to HIV-1 and HIV-2
for specimens found to be repeatedly reactive by screening procedures. *This test should not be performed / recommended if the HIV rapid test(s) and Ag/Ab test are non-reactive.*

Overarching Diagnostic Principles

This document includes recommended clinical management plans for cases in which HIV testing yields discordant/discrepant results. The following principles were used for drafting this document:

1. Any reactive/positive HIV test will trigger an immediate return visit for confirmatory testing and sample collection (the confirmatory visit must be conducted on a different day than the visit where the first reactive/positive test result was obtained). In this document, the first sample with a reactive or positive HIV test is referred to as the index sample; the sample from the subsequent visit is referred to as the confirmatory sample.
2. In all cases where a reactive/positive HIV test result is obtained, all the HIV tests done at the index visit are also collected/performed at the confirmatory visit (with the possible addition of HIV DNA testing, if approved).
3. In some cases, additional HIV testing will be performed using a sample collected at a third visit (after a 4-week product hold) to help determine HIV status. A 4-week product hold will only be considered in participants who had no prior CAB-LA injections.
4. The following test results at either the index or confirmatory visit are considered to be sufficient evidence of HIV infection to permanently discontinue study products and recommend immediate initiation of ART:
 - a positive discriminatory antibody test
 - a positive HIV RNA test ≥ 200 c/mL
 - a positive HIV DNA test above the assay's limit of detection (this assay is not included/available in the OLE2 phase of the trials)

Other combinations of test results may also indicate infection (see below).

Clinical management plans

This document provides clinical management plans for the following scenarios where tests used to screen for HIV infection at the index visit are discrepant/discordant:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>One or both HIV rapid tests</th>
<th>Instrumented Ag/Ab test</th>
<th>HIV RNA test*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reactive</td>
<td>Non-reactive</td>
<td>Not detected</td>
</tr>
<tr>
<td>2</td>
<td>Non-reactive</td>
<td>Reactive</td>
<td>Not detected</td>
</tr>
<tr>
<td>3</td>
<td>Reactive</td>
<td>Reactive</td>
<td>Not detected</td>
</tr>
<tr>
<td>4</td>
<td>Reactive or non-reactive</td>
<td>Non-reactive</td>
<td>Detected/positive</td>
</tr>
</tbody>
</table>

*Performed as a screening test in the OLE phase of the trials.

Different management plans are presented for two groups of participants. These groups are defined regardless of original study randomization arm or current PrEP regimen:

- No prior CAB-LA exposure (participants who received oral cabotegravir with no CAB-LA injections are included in this group)
- Participants with one or more prior CAB-LA injection (regardless of the time since the last injection)
NOTE: Guidelines related to HIV RNA testing are for the OLE1 phase of the studies where HIV RNA testing is done at every study visit. For sites that have not yet transitioned to the OLE1 phase, HIV RNA testing should be performed at the index and confirmatory visits in all cases when a reactive Ag/Ab test is obtained.
(I) Clinical Management Plans for participants with no prior or current CAB-LA exposure

Notes: DNA testing is not indicated; includes a 4-week hold in some cases; a discriminatory test is not performed at all sites; testing criteria for ART initiation varies by site. “Ag/Ab test” refers to a laboratory instrumented antigen/antibody assay. See table footnotes for interpretation of HIV RNA assay results.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Index visit test results*</th>
<th>Initial guidance</th>
<th>Confirmatory visit test results</th>
<th>Likely status</th>
<th>Follow-up guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rapid test(s) reactive</td>
<td>Hold study product</td>
<td>All tests negative/NR except for rapid test(s)</td>
<td>HIV uninfected</td>
<td>Resume study product</td>
</tr>
<tr>
<td></td>
<td>Ag/Ab test non-reactive</td>
<td></td>
<td></td>
<td>False reactive rapid test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNA test not detected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ag/Ab test reactive;</td>
<td></td>
<td>Infection likely</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNA and discriminatory tests negative</td>
<td></td>
<td>(2 screening tests reactive, not confirmed)</td>
<td></td>
<td>Refer for ART if eligible based on local guidelines; Continue product hold; retest after a 4-week product hold if not eligible for ART</td>
</tr>
<tr>
<td></td>
<td>RNA and/or discriminatory test positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Rapid test(s) non-reactive, Ag/Ab test reactive</td>
<td>Hold study product</td>
<td>All tests negative/NR except for Ag/Ab test</td>
<td>HIV uninfected</td>
<td>Continue product hold; retest after a 4-week product hold; refer for ART based on local guidelines</td>
</tr>
<tr>
<td></td>
<td>RNA test not detected</td>
<td></td>
<td></td>
<td>False reactive Ag/Ab test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rapid test reactive;</td>
<td></td>
<td>Infection likely</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNA and discriminatory tests negative</td>
<td></td>
<td>(2 screening tests reactive)</td>
<td></td>
<td>Continue product hold; retest after a 4-week product hold; refer for ART based on local guidelines</td>
</tr>
<tr>
<td></td>
<td>RNA and/or discriminatory test positive</td>
<td></td>
<td></td>
<td></td>
<td>Permanently discontinue study product, refer for ART</td>
</tr>
<tr>
<td>3</td>
<td>Rapid test(s) and Ag/Ab test reactive</td>
<td>Hold study product</td>
<td>Rapid test(s) and Ag/Ab test reactive RNA and discriminatory tests not detected/negative</td>
<td>Infection likely</td>
<td>Continue product hold; retest after a 4-week product hold; refer for ART based on local guidelines</td>
</tr>
<tr>
<td></td>
<td>RNA test not detected</td>
<td></td>
<td></td>
<td>(2 screening tests repeatedly reactive)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RNA test positive</td>
<td>Hold study product</td>
<td>Repeat RNA test positive* (regardless of other test results)</td>
<td>HIV infection confirmed</td>
<td>Permanently discontinue study product; Refer for ART</td>
</tr>
<tr>
<td></td>
<td>(regardless of other test results)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All tests non-reactive/negative</td>
<td></td>
<td>Consider false pos RNA result or other mixup</td>
<td></td>
<td>Continue product hold; retest after a 4-week product hold to see if infection can be confirmed</td>
</tr>
<tr>
<td></td>
<td>Repeat RNA test not detected, any other test reactive/positive</td>
<td></td>
<td>Possible or confirmed infection</td>
<td></td>
<td>Continue product hold; retest after a 4-week product hold to see if infection can be confirmed</td>
</tr>
</tbody>
</table>

Footnotes:
HIV RNA testing is only included as an HIV screening assay at the index visit in the OLE phase of the studies. See the note above about the addition of HIV RNA testing at the confirmatory visit for participants with discordant/discrepant results.

The following results are considered to be positive HIV RNA results: (1) viral load above the limit of quantification (for viral load assays); (2) detected above the limit of detection (for qualitative RNA assays). For results detected below the limit of quantification (for viral load assays), testing should be reviewed to be sure that the result was positive/detected; if this is the case, the assay should be repeated using a new sample collected on a different date (stored samples should not be used for this testing).
(II) Clinical Management Plans for participants with at least one prior CAB-LA injection

The Clinical Management Plan for these participants includes DNA testing during the OLE phase of the trials. This testing is not included/available in the OLE2 phase of the trials. Results from local HIV RNA testing should be obtained before recommending HIV DNA testing; DNA testing should not be recommended if the HIV RNA test is positive. The Clinical Management Plan for these participants does not include a 4-week product hold.

The following guidance is provided below for interpretation of cases where participants have a reactive rapid test and/or a reactive Ag/Ab test.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Index visit test results</th>
<th>Initial guidance</th>
<th>Confirmatory visit test results</th>
<th>Likely status</th>
<th>Follow-up guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rapid test(s) reactive, Ag/Ab test non-reactive RNA test not detected</td>
<td>Hold study product, Perform DNA testing</td>
<td>All tests negative/NR except for rapid test(s)</td>
<td>HIV uninfected False reactive rapid test</td>
<td>Resume study product</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ag/Ab test reactive; RNA and discriminatory tests negative</td>
<td>Infection likely (2 screening tests reactive, not confirmed)</td>
<td>Permanently discontinue study product; refer for ART based on local guidelines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RNA >200 c/mL and/or discriminatory test positive</td>
<td>Infection confirmed</td>
<td>Permanently discontinue study product, refer for ART</td>
</tr>
<tr>
<td>2</td>
<td>Rapid test(s) non-reactive, Ag/Ab test reactive RNA test not detected</td>
<td>Hold study product, perform RNA testing; send DNA testing if the RNA result is negative/not detected and DNA testing is approved</td>
<td>All tests negative/NR except for Ag/Ab test</td>
<td>HIV uninfected Possible false reactive Ag/Ab test</td>
<td>Retest at subsequent visits; include testing with a second/different Ag/Ab test if available</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rapid test reactive; Ag/Ab test still reactive; RNA and discriminatory tests negative; DNA test negative (if performed)</td>
<td>Infection likely (2 screening tests reactive)</td>
<td>Permanently discontinue study product; refer for ART based on local guidelines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RNA >200 c/mL, discriminatory test positive, or DNA test positive >LLOD</td>
<td>Infection confirmed</td>
<td>Permanently discontinue study product; Refer for ART</td>
</tr>
<tr>
<td>3</td>
<td>Rapid test(s) and Ag/Ab test reactive RNA test not detected</td>
<td>Hold study product, Perform RNA testing; send DNA testing if the RNA result is negative/not detected and DNA testing is approved</td>
<td>Rapid test(s) and Ag/Ab test reactive RNA not detected, DNA and discriminatory tests negative</td>
<td>Infection possible (2 screening tests repeatedly reactive)</td>
<td>Retest at subsequent visits</td>
</tr>
</tbody>
</table>
Discordant/Discrepant HIV Testing Results Guidance – Version 2.2 February 7, 2023

RNA >200 c/mL, discriminatory test positive, or DNA test positive >LLOD | Infection confirmed | Permanently discontinue study product; Refer for ART

Footnotes:
HIV RNA testing is included at the index visit in the OLE1 phase of the trials. See the table for instructions for adding HIV RNA testing at the confirmatory visit for participants in the pre-OLE1 study who have discordant/discrepant results. The following results are considered to be positive HIV RNA results: (1) viral load above the limit of quantification (for viral load assays); (2) detected above the limit of detection (for qualitative RNA assays). *DNA testing is not available/performed in the OLE2 phase of the trials. Available clinical information (e.g., low HIV risk) may be used to inform a decision about whether to stop ART and restart CAB-LA as PrEP. This decision should be made in discussion with the 083/4 HIV alias committee along with the site IoR and should be clearly documented in the participant's record.

The following guidance is provided below for interpretation of cases where the only reactive/positive results are results from HIV RNA screening.

<table>
<thead>
<tr>
<th>1st RNA test result</th>
<th>Repeat RNA test result*</th>
<th>Management of CAB-LA</th>
<th>ART</th>
</tr>
</thead>
<tbody>
<tr>
<td><200 copies/mL (including results <LLOD/Q)</td>
<td>Not detected</td>
<td>Continue CAB-LA PrEP</td>
<td>No ART initiation</td>
</tr>
<tr>
<td><200 copies/mL (including results detected <LLOD/Q)</td>
<td><200 copies/mL detected <LLOD/Q</td>
<td>Permanently discontinue CAB-LA PrEP</td>
<td>Initiate ART</td>
</tr>
<tr>
<td>>200 copies/mL</td>
<td>Detected (any value, including results detected <LLOD/Q)</td>
<td>Permanently discontinue CAB-LA PrEP</td>
<td>Initiate ART</td>
</tr>
<tr>
<td>>200 copies/mL</td>
<td>Not detected</td>
<td>Permanently discontinue CAB-LA PrEP</td>
<td>Initiate ART</td>
</tr>
</tbody>
</table>

Footnotes:
The following results are considered to be positive HIV RNA results: (1) viral load above the limit of quantification (for viral load assays); (2) detected above the limit of detection (for qualitative RNA assays). DNA testing is not available/performed in the OLE2 phase of the trials. Available clinical information (e.g., low HIV risk) may be used to inform a decision about whether to stop ART and restart CAB-LA as PrEP. This decision should be made in discussion with the 083/4 HIV alias committee along with the site IoR and should be clearly documented in the participant's record.

ADDITIONAL GUIDANCE

Considerations for participants with signs/symptoms of acute HIV infection

Perform HIV testing if the participant has signs or symptoms of acute HIV infection. The clinical presentations of classically described acute HIV infection may include fever, myalgia, pharyngitis, lymphadenopathy, rash, diarrhea, and headache in various combinations. HIV testing in this scenario should include a rapid test, instrumented Ag/Ab test, and HIV RNA test. If the site has not yet implemented protocol v4, include an RNA screening test in addition to protocol-required rapid testing and instrumented Ag/Ab testing. Note that RNA levels may be very low or undetectable for several months in persons who received at least one CAB-LA injection.

Persistently Positive/Reactive HIV Screening Tests

In scenarios above that allow resumption of study products, management of participants who have repeatedly reactive rapid tests or repeated reactive Ag/Ab tests is challenging. For participants who received at least one CAB-LA injection, the protocol-specified HIV testing algorithm used for follow-up visits will be modified to include cell pellet storage at all subsequent visits until HIV infection is confirmed.
confirmed, or until HIV infection is ruled out in consultation with the 083HIV or 084HIV@hptn.org alias teams. Prior to entry into OLE2 (i.e., for HPTN 083: Step 6 entry @ week 56 of the OLE; for HPTN 084: XXXX), stored cell pellets may be sent for HIV DNA testing at the HPTN LC at the direction of the HIV alias group. If the participant has new or different patterns of reactive/positive test results at subsequent study visits, clinical management should follow the algorithms presented above.

Long-term Clinical Management

For cases where study drug is permanently discontinued and participants are referred for ART, the decision whether participants should be continued on life-long ART or undergo an analytic treatment interruption (ATI) at some future time point is a complex and nuanced clinical decision beyond the scope of clinical trial management, and ideally should be done in the context of a clinical trial or with expert guidance/oversight. The HPTN 083 or 084 leadership teams will be happy to help local investigators with these decisions. Please contact 083 or 084 team leadership for additional opportunities for such participants, including additional clinical trial/research opportunities.

Discussion

Clinical management decisions in PrEP trials are complicated for participants who have discordant/discrepant HIV test results. Management in this setting requires clinical judgment, knowledge of the performance characteristics of each HIV test, knowledge of the potential impact of each PrEP agent on viral replication and antibody production, and an understanding of the current body of knowledge regarding HIV testing patterns in breakthrough infections that occur in clinical trials of long-acting PrEP agents. Decisions to observe participants off study PrEP agents are particularly nuanced, since it may be very difficult to discriminate between true HIV infection from false reactive/false positive test results if HIV RNA and HIV DNA are not detected or if HIV DNA is detected at a very low level, particularly if persons have been exposed to long-acting PrEP. Permanent discontinuation of PrEP in these cases could place study participants at increased risk for HIV acquisition. An argument that continuing CAB-LA in these cases would put participants at risk (due to unnecessary drug exposure and increased risk of drug resistance) is being further evaluated in the ongoing HPTN 083 and 084 trials; these risks are a potential consequence of ongoing CAB monotherapy exposure in the setting of occult/undetected HIV infection.

The possibility that participants could have compartmentalized infection or low-reservoir infection that could have potential for cure with ongoing administration of long-acting PrEP agents or ART was considered in drafting this document, and is the basis for recommendation that such interventions be considered in the context of research protocols.

The opposite extreme was also considered: permanent discontinuation of study products for all participants who have reactive HIV rapid test or instrumented Ag/Ab test only. However, this strategy would put uninfected study participants (those with false positive test results) at risk for HIV acquisition and/or commit them to lifelong ART in the absence of confirmed HIV infection. These approaches might also cause untold emotional distress, stigma, and other potential harms by implying that a participant is infected in the absence of confirmation of infection. These considerations must be carefully balanced against the profound ability of CAB and CAB-LA to suppress viral replication and delay/diminish antibody production below the level of detection available diagnostic tests. Special considerations are needed during pregnancy and post-partum if the HIV status of the mother is uncertain, since this may impact use of antiretroviral drugs for the mother’s health and to prevent mother-to-child transmission.
The proposed management plan (subject to change as new information is obtained) provides the team’s best judgement for a pathway for evaluating discordant/discrepant HIV test results, minimizing risk to participants, and addressing critically-important questions about the efficacy and safety of CAB-LA as a PrEP agent.
REFERENCES

Original consulting advisory group:

Grace Aldrovandi MD PhD – University of California, Los Angeles
Jared Baeten MD PhD – University of Washington
Bernard Branson MD – Scientific Affairs Inc.
David Burns MD – NIH Division of AIDS
Connie Celum MD MPH – University of Washington
Wafaai El-Sadr MD MPH – Columbia University, HPTN Co-Principal Investigator
Susan Eshleman MD PhD – HPTN Laboratory Center
Jennifer Farrior – FHI360
Myron S. Cohen MD - University of North Carolina, Chapel Hill, HPTN Co-Principal Investigator
Deborah Donnell, PhD - SCHARP
Joseph J. Eron MD – University of North Carolina, Chapel Hill
Kailazarid Gomez-Feliciano – FHI360
Robert Grant MD PhD – UCSF Gladstone Institute
Beatriz Grinsztejn MD PhD – IPEC/Fiocruz Institute, Rio de Janeiro, Brazil
Mina Hosseinipour MD MPH – UNC Malawi Project, Lilongwe, Malawi
James P. Hughes PhD - SCHARP
Sinead Delaney-Moretlwe - University of Witwatersrand, HPTN 084 Protocol Chair
Daniel R. Kuritzkes - Brigham and Women’s Hospital, Harvard Medical School
David A. Margolis, MD MPH – Viiv Healthcare
Marybeth McCauley – FHI360
Jean-Michel Molina MD PhD – Univeristy of Paris Diderot
Deborah Persaud MD PhD – Johns Hopkins University
Estelle Piwowar-Manning – HPTN Laboratory Center
James Rooney MD – Gilead Sciences
Paul E. Sax MD – Brigham and Women’s Hospital, Harvard Medical School
Scott Rose – FHI360
Nirupama Deshamane Sista PhD – FHI360
Sheryl Zwerski RN PhD – NIH Division of AIDS