Cabotegravir Maintains Protective Efficacy in the Setting of Bacterial STIs: HPTN 083

Meredith E. Clement, Brett Hanscom, Daniel Haines, Jose Bazan, Nuntisa Chotirosniramit, Sharon Mannheimer, Kenneth H. Mayer, Mayara Secco Torres da Silva, Lydia Soto-Torres, Alex R. Rinehart, James F. Rooney, Marybeth McCauley, Beatriz Grinsztejn, Raphael J. Landovitz, for HPTN 083 Study Team
Background

• Bacterial sexually transmitted infections (STIs) facilitate HIV transmission and acquisition
• Mucosal inflammation and genital ulcers can lower the barrier to HIV infection
• It is important to determine whether STIs diminish efficacy of each pre-exposure prophylaxis (PrEP) agent
Background

- Prior studies: STIs do not attenuate the protection offered by tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) for HIV PrEP
- No such evaluations have been conducted for long-acting injectable cabotegravir (CAB-LA)
Background

Background
Methods

• Secondary analysis using data from HPTN 083 blinded period
• Serologic testing for syphilis and NAAT for rectal and urethral gonorrhea and chlamydia every 6 months, and with reported symptoms or exposures
• New syphilis infections were centrally adjudicated, as was date of first HIV diagnosis
Methods

- Two analyses were conducted:
 - Association between baseline characteristics and STI incidence
 - CAB-LA maintenance of efficacy in the setting of bacterial STIs
- STI Incidence analysis: excluded those without follow-up STI testing
- Efficacy analysis: included those with baseline STI testing but without follow-up STI testing
Methods: STI Incidence Analysis

• Incident STI infections per 100 person-years (PY), calculated from enrollment to last STI testing.
• Rates were calculated by demographic characteristic:
 • Age, race, ethnicity, gender cohort, education, treatment arm, drug use, alcohol use, region, condom usage, partner number, marital status, and baseline STI.
• Poisson regression to model the association between baseline factors and STI incidence.
Methods: Maintenance of Efficacy

• Cox proportional hazards modeling with STI status as a time-varying covariate
 • Potential interactions between STI status and the relative efficacy of CAB-LA vs. TDF/FTC
• Each time interval between STI tests was classified as “STI-positive” or “STI-negative”

We conducted a base case analysis and two sensitivity analyses
Methods: Maintenance of Efficacy

For the base case analysis, we considered intervals before and after each positive STI test as STI-positive
Methods: Maintenance of Efficacy

Sensitivity Analysis #1: Dichotomized participants as ever/never having an incident STI

Methods: Maintenance of Efficacy

Sensitivity Analysis #2: Carried STI positive status backwards to the last STI negative test

Results: STI incidence

Among 3859 participants, STIs were diagnosed in 1562 (40.5%), with multiple STIs reported for 691 (17.9%).

79% of STI diagnoses occurred in 25% of pts.

Overall STI Incidence and 95% Confidence Interval
- Overall: 50.7% (48.9, 52.6)
- CAB: 49.9% (47.3, 52.6)
- TDF/FTC: 51.6% (48.9, 54.3)

Results: STI Incidence Rates, n= 3859 participants

<table>
<thead>
<tr>
<th></th>
<th># Positive Tests</th>
<th>IR (per 100 PY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any STI</td>
<td>2819</td>
<td>50.7</td>
</tr>
<tr>
<td>Syphilis</td>
<td>923</td>
<td>16.7</td>
</tr>
<tr>
<td>Urogenital Gonorrhea</td>
<td>134</td>
<td>2.4</td>
</tr>
<tr>
<td>Urogenital Chlamydia</td>
<td>249</td>
<td>4.5</td>
</tr>
<tr>
<td>Rectal Gonorrhea</td>
<td>600</td>
<td>11.0</td>
</tr>
<tr>
<td>Rectal Chlamydia</td>
<td>913</td>
<td>16.7</td>
</tr>
</tbody>
</table>

Results: STI Incidence Rate by Subgroup

Results: STI Incidence Rate by Subgroup

Region
- United States: 41.5
- Latin America: 63.9
- Asia: 49.9
- Africa: 75

Age
- <30: 56.4
- ≥30: 40

Race, US
- Black: 50.1
- non-Black: 34.4

Ethnicity
- Hispanic/Latino: 57.4
- Not Hispanic/Latino: 47.1

Marital Status
- Married/Legal Partnership: 39.3
- Live with partner: 57.1
- Married/Legal Partnership: 49.2
- Have partner: 38.9

Baseline STI(s)
- No: 43.1
- Yes: 83.9

Education
- None: 57.1
- Primary: 65.8
- Secondary: 58.1
- Technical: 53.9
- College+: 48.1

Results: STI incidence

In the final multivariable model: only age, race, and baseline STI status were statistically significant at p<0.05

<table>
<thead>
<tr>
<th>Age (<30: Ref.)</th>
<th>Odds Ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-39</td>
<td>0.77 (0.70, 0.84)</td>
<td><0.001</td>
</tr>
<tr>
<td>40-49</td>
<td>0.76 (0.65, 0.88)</td>
<td><0.001</td>
</tr>
<tr>
<td>50-59</td>
<td>0.71 (0.58, 0.92)</td>
<td>0.009</td>
</tr>
<tr>
<td>60+</td>
<td>0.93 (0.48, 1.81)</td>
<td>0.84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region Specific Race</th>
<th>Odds Ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia vs Africa</td>
<td>1.62 (0.39, 0.99)</td>
<td>0.43</td>
</tr>
<tr>
<td>US Black vs non-Black</td>
<td>1.37 (1.21, 1.55)</td>
<td><0.001</td>
</tr>
<tr>
<td>LA Black/Mixed vs Non-Black/Mixed/Native</td>
<td>1.26 (1.08, 1.46)</td>
<td>0.003</td>
</tr>
<tr>
<td>LA Native vs Non-Black/Mixed/Native</td>
<td>0.65 (0.56, 0.76)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baseline STI status (No: Ref.)</th>
<th>Odds Ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>2.00 (1.653, 2.418)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Results: Maintenance of Efficacy

BASE CASE MODEL

- **p-value: 0.75**

<table>
<thead>
<tr>
<th></th>
<th>STI Absent</th>
<th>STI Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAB</td>
<td>HR (95% CI)</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>TDF/FTC</td>
<td>0.31 (0.13, 0.71)</td>
<td>0.37 (0.15, 0.95)</td>
</tr>
</tbody>
</table>

Results: Sensitivity Analyses

BASE CASE MODEL

- **p-value:** 0.75

SENSITIVITY ANALYSIS #1

- **p-value:** 0.90

SENSITIVITY ANALYSIS #2

- **p-value:** 0.48

Conclusions

- STI rates were high and concentrated among participants
- Factors associated with STIs were consistent with those reported in the literature, and not associated with study arm
- CAB-LA maintained robust protective efficacy in the setting of bacterial STIs

- These data may be helpful in guiding implementation of new biomedical STI prevention strategies
- CAB-LA maintained protective efficacy, and future PrEP agents should be similarly evaluated
- Continued innovation in STI prevention is critically needed

Acknowledgements

Sponsors
• US National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Mental Health (NIMH), National Institute on Drug Abuse (NIDA), and the National Institute of Child Health and Human Development (NICHD), all components of U.S. National Institutes of Health

HIV Prevention Trials Network
• Laboratory Center (Johns Hopkins University)
• Statistical Center for HIV/AIDS Research and Prevention (SCHARP)
• Leadership and Operations Center, FHI360
• HPTN Leadership

Pharmaceutical Support
• ViiV Healthcare
• Gilead Sciences, Inc.

HPTN 083 Study Team
Ryan Kofron (UCLA)

Community Program Managers
Community Educators and Recruiters
CAB members

Our 43 sites in 7 countries

And especially, our HPTN Participants!