ANTIBODY PROFILING IDENTIFIES ANTIBODY TARGETS ASSOCIATED WITH NATURAL HIV CONTROL

Athena Chen
The Johns Hopkins Bloomberg School of Public Health
Baltimore, Maryland, United States

Disclosure: None
Background

• HIV viral suppression is associated with delayed disease progression and reduced transmission.

• HIV controllers suppress HIV viral load (VL) to low levels without antiretroviral treatment (ART).

• We compared antibody profiles in HIV controllers, viremic non-controllers, and non-controllers who were virally suppressed on ART.
Methods

- We used a massively parallel antibody profiling system (VirScan) to quantify antibody binding to 3,384 peptides spanning the HIV genome.
- Peptides with different antibody reactivities between controllers and non-controllers were identified using moderated t-tests and q-values for multiple testing correction.
- Comparison of these peptides was assessed in the validation cohort using one-sided moderated t-tests and Fisher’s inverse chi-squared test.
- Using linear regression, we examined the relationship between median antibody reactivity to each of the identified peptides and VL set point.

<table>
<thead>
<tr>
<th>Study Cohort</th>
<th>Sample source</th>
<th>Participant status</th>
<th>Viral load (copies/mL)</th>
<th># persons</th>
<th># samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery Cohort</td>
<td>SCOPE Study</td>
<td>Elite controllers</td>
<td><40</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viremic controllers</td>
<td>40-2,000</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-controllers suppressed on ART</td>
<td><40</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viremic non-controllers</td>
<td>>2,000</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Validation Cohort</td>
<td>JH Medicine Elite Controller Cohort</td>
<td>Elite controllers</td>
<td><50</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>JH HIV Clinic</td>
<td>Non-controllers suppressed on ART</td>
<td><400</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Analysis of viral load set point and antibody reactivity</td>
<td>RV217 Study</td>
<td>Longitudinal samples collected prior to ART initiation</td>
<td>Various</td>
<td>53</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>GS Cohort</td>
<td>Longitudinal samples collected prior to ART initiation</td>
<td>Various</td>
<td>54</td>
<td>231</td>
</tr>
</tbody>
</table>
In the Discovery Cohort, we identified 62 peptides that were preferentially targeted in HIV controllers compared to non-controllers.

In the Validation Cohort, combined antibody reactivity to these peptides was also higher in elite controllers compared to non-controllers who were virally suppressed on ART. Reactivity of antibodies to the 62 peptides was similar among HIV controllers who did or did not have the protective HLA-B*57 allele.

Higher antibody reactivity to a subset of the peptides in the p17 cluster was significantly associated with lower viral load set points in the group of longitudinally-followed non-controllers.
Conclusions

• A comprehensive, unbiased assessment of antibody reactivity to HIV peptides spanning the viral genome identified clusters of homologous peptides that were preferentially targeted in HIV controllers and in non-controllers who had lower viral load set points.

• This research provides new insights into natural control of HIV infection and may inform research on immune-based interventions for HIV prevention and treatment.

• Further research is needed to characterize antibodies that target these peptides and to evaluate T-cell targeting of these epitopes.
Acknowledgements

- This work was supported by the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health (NIH) through R01-AI095068 and the National Institute of General Medical Sciences (NIGMS) through R01-GM136724. Additional support was provided through the Laboratory Center of HIV Prevention Trials Network (HPTN) which is sponsored by the NIAID, National Institute on Drug Abuse, National Institute of Mental Health, and Office of AIDS Research, of the NIH, DHHS (UM1-AI068613), and through intramural funding from the Division of Intramural Research, NIAID, NIH. The Johns Hopkins HIV Cohort was supported by NIH grants U01-DA036935 and U01-AI069918. The Johns Hopkins Medicine Elite Controller Cohort was supported by NIH grant R01-AI140789. The RV217 study was supported by a cooperative agreement (W81XWH-18-2-0040) between the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., and the U.S. Department of Defense. The SCOPE cohort was supported the UCSF/Gladstone Institute of Virology & Immunology CFAR (P30-AI027763). The Hormonal Contraception and HIV Genital Shedding (GS) Study Cohort was supported by NIH contract N01-HD-0-3310.

- The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.