Analysis of Genetic Linkage of HIV from Couples Enrolled in the HPTN 052 Trial

Susan H. Eshleman, MD/PhD HPTN Network Laboratory

Johns Hopkins Univ. School of Medicine

6th IAS Conference - Rome, Italy July 18, 2011

Abstract Authors

J Hughes, S Hudelson, A Redd, L Wang, R Debes, Y Chen, S Porcella, E Piwowar-Manning, M McCauley, M Hosseinipour, J Kumwenda, J Hakim, S Chariyalertsak, G de Bruyn, B Grinsztejn, N Kumarasamy, J Makhema, K Mayer, J Pilotto, B Santos, T Quinn, M Cohen, and S Eshleman for the HPTN 052 Study Team

Linkage Analysis

39 transmission events were included in the April 28th DSMB report.

Linkage analysis was performed to identify the subset of transmission events where the index participant was the likely source of the partner's HIV infection. The DSMB report included 28 linked transmission events. Those data were used to analyze the impact of immediate ART on HIV prevention.

One additional linked transmission event was identified after the DSMB meeting. This additional event was in the delayed ART arm, further strengthening the association between immediate ART and HIV prevention.

Phylogenetic analysis of *pol* sequences obtained by population sequencing

Statistical (Bayesian) analysis of genetic distances from *pol* sequence pairs

Phylogenetic analysis of *env* sequences obtained by next generation sequencing

Genetic Diversity of HIV

HIV RNA

HIV Diversity in an Infected Person

Population Sequencing

Phylogenetic analysis of pol sequences obtained by population sequencing

Statistical (Bayesian) analysis of genetic distances from *pol* sequence pairs

Phylogenetic analysis of *env* sequences obtained by next generation sequencing

Phylogenetic Analysis

Adapted from Margulies et al., Genome Res 2007;17:760-77 ©2007

Phylogenetic analysis of *pol* sequences obtained by population sequencing

Statistical (Bayesian) analysis of genetic distances from *pol* sequence pairs

Phylogenetic analysis of *env* sequences obtained by next generation sequencing

Statistical (Bayesian) Analysis Comparison of genetic similarity values from paired sequences (*pol*)

Representative data from one transmission event

Pair type	Basis	Sample source	# pairs	Similarity values
"Known" linked	Two samples from the same person	Index-index Partner-partner	1 1	99.8 98.2
"Known" unlinked	Unrelated individuals	10 other index participants / site	>50	91.2-95.3
Unknown	Transmission event	Index-partner (2 each)	4	98.4-98.9

Statistical (Bayesian) Analysis Comparison of sequence similarity values from paired sequences (*pol*)

Representative data from one transmission event

	Pair type	Basis	Sample source	# pairs	Similarity values
	"Known" linked	Two samples from the same person	Index-index Partner-partner	1 1	99.8 98.2
	"Known" unlinked	Unrelated individuals	10 other index participants / site	>50	91.2-95.3
	Unknown	Transmission event	Index-partner (2 each)	4	98.4-98.9

Statistical (Bayesian) Analysis Comparison of sequence similarity values from paired sequences (*pol*)

Representative data from one transmission event

	Pair type	Basis	Sample source	# pairs	Similarity values
	"Known" linked	Two samples from the same person	Index-index Partner-partner	1 1	99.8 98.2
	"Known" unlinked	Unrelated individuals	10 other index participants / site	>50	91.2-95.3
•	Unknown	Transmission event	Index-partner (2 each)	4	98.4-98.9

Phylogenetic analysis of *pol* sequences obtained by population sequencing

Statistical (Bayesian) analysis of genetic distances from *pol* sequence pairs

Phylogenetic analysis of *env* sequences obtained by next generation sequencing

Initial Linkage Assessment

26 events analyzed were clearly linked using both methods – those 26 events were classified as linked

The linkage status of 12 events could not be definitively determined

Phylogenetic analysis of *pol* sequences obtained by population sequencing

Statistical (Bayesian) analysis of genetic distances from *pol* sequence pairs

Phylogenetic analysis of env sequences obtained by next generation sequencing

Population Sequencing

Consensus sequence e.g., AACTGATCGGAA...

Consensus sequence e.g., ATGGCTACCGAA...

Population Sequencing

Consensus sequence e.g., AACTGATCGGAA...

Consensus sequence e.g., ATGGCTACCGAA...

Next Generation Sequencing

sequence 1 sequence 2 sequence 3 sequence 4 sequence 5 sequence 6...

sequence 1 sequence 2

sequence 3

sequence 4**

sequence 5

sequence 6...

Example of an Unlinked Event (env)

Next Generation Sequencing

One additional event was confirmed to be linked by next generation sequencing after the April 28th DSMB meeting.

This event was in the delayed study arm, further strengthening the association between immediate ART and HIV prevention.

This partner seroconverted ~1 month after the index started ART. The partner was most likely infected shortly before the index started ART, or shortly after the index started ART before the index was virally suppressed.

Summary of Linkage Analysis

29 linked events

- In 2 cases, linkage was only apparent using next generation sequencing
- 1 immediate ART arm; 28 delayed ART arm

7 unlinked events

• 4 immediate ART arm; 3 delayed ART arm

Summary of Linkage Analysis

29 linked events

- In 2 cases, linkage was only apparent using next generation sequencing
- 1 immediate ART arm; 28 delayed ART arm

7 unlinked events

• 4 immediate ART arm; 3 delayed ART arm

3 additional events

- 2 events were not classified based on available data
- 1 late event is still being analyzed
- All 3 were in the delayed arm, not on ART

Linkage was <u>not</u> associated with:

- Geographic region
- Index gender
- Index CD4 cell count at enrollment
- Years between enrollment and seroconversion

	Linked	Unlinked	P value
Index study arm			0.018
Immediate ART	1 (3%)	3 (43%)	
Delayed ART	28 (97%)	4 (57%)	
Index on ART at time of SC			0.0076
Yes	2 (7%)	4 (57%)	
No	27 (93%)	3 (43%)	
# sex partners ≤3 months before SC			<0.0001 ^a
>1	0 (0%)	4 (57%)	
=1	26 (90%)	3 (43%)	
=0	2 (7%)	0 (0%)	
Total	29	7	

	Linked	Unlinked	P value
Index study arm			0.018
Immediate ART	1 (3%)	3 (43%)	
Delayed ART	28 (97%)	4 (57%))
Index on ART at time of SC			0.0076
Yes	2 (7%)	4 (57%)	
No	27 (93%)	3 (43%)	
# sex partners ≤3 months before SC			<0.0001 ^a
>1	0 (0%)	4 (57%)	
=1	26 (90%)	3 (43%)	
=0	2 (7%)	0 (0%)	
Total	29	7	

	Linked	Unlinked	P value
Index study arm			0.018
Immediate ART	1 (3%)	3 (43%)	
Delayed ART	28 (97%)	4 (57%)	
Index on ART at time of SC			0.0076
Yes	2* (7%)	4 (57%)	
No	27 (93%)	3 (43%)	
# sex partners ≤3 months before SC			<0.0001 ^a
>1	0 (0%)	4 (57%)	
=1	26 (90%)	3 (43%)	
=0	2 (7%)	0 (0%)	
Total	29	7	

1 linked transmission in the immediate ART arm identified pre-DSMB 1 linked transmission in the delayed ART arm identified post-DSMB

	Linked	Unlinked	P value
Index study arm			0.018
Immediate ART	1 (3%)	3 (43%)	
Delayed ART	28 (97%)	4 (57%)	
Index on ART at time of SC			0.0076
Yes	2 (7%)	4 (57%)	
No	27 (93%)	3 (43%)	
# sex partners ≤3 months before SC*			<0.0001 ^a
>1	0 (0%)	4 (57%)	
=1	26 (90%)	3 (43%)	
=0	2 (7%)	0 (0%)	
Total	29	7	

*Data was missing for one participant

Conclusions

We used a combination of laboratory and statistical methods to determine the linkage status of transmission events in HPTN 052

These data were used to identify the endpoints used in the analysis of HIV prevention in the HPTN 052 trial

A manuscript describing the analysis of HIV linkage in HPTN 052 is In Press in the Journal of Infectious Diseases

Thanks

Craig Martens Stacy Ricklefs San-San Ou Stuart Ray Supriya Munshaw

Susan Fiscus Ron Swanstrom

