Source and recipient characteristics of HIV transmission pairs identified in the HPTN 071 phylogenetics project

Matthew Hall

Big Data Institute, University of Oxford
Outline
1. Background
2. Participants, methods and data
3. Results
4. Conclusions
Background
Understanding heterogeneities are crucial to achieve UNAIDS goals

>70% of infected population virally suppressed
<30% reduction in rates of new infection

UNAIDS 2018 report
A cluster-randomised trial of HIV treatment as prevention
• Ran from 2013 to 2018
• Primary outcome: HIV incidence at 36 months
• Three arms:
 1. Prevention intervention with rapid testing plus immediate ART
 2. Prevention intervention with rapid testing plus ART by national guidelines
 3. Standard of care
• 21 communities in Zambia and South Africa
• Total population ~1 million
• Random sample (population cohort) of 2,500 from each community used to monitor outcome
• Hayes et al, *NEJM*, 2019
Participants, methods and data
Participants

- Genomic data was collected as part of the HPTN 071 study
- Zambia only
 - 9 of 12 study communities
- Phylogenetics data was acquired from two sources:
 - Patients in the population cohort, enrolled to measure the primary endpoint of the trial
 - Patients attending HIV clinics (HCFs) within the trial areas
Source attribution

• We have not sampled everyone
• If we can identify which people we have sampled were infected by which others, we can characterise source and recipient populations
• Characterising sources can help better target interventions
• But how to identify pairs?
Phylogenetics helps us determine how individuals are related in the transmission chain.

This normally requires multiple sequences per host.

We infer that person A may be the source of infection for person B.

The analysis is anonymised.

We are only interested in exploring the characteristics of transmission by comparing many such pairs, *not* identifying exactly who infected who.
Phylogenetic methods

- The methodology we use allows us to use the HIV genome to:
 - Estimate the time of infection of each individual
 - Identify likely transmission pairs within the study area
 - Reconstruct the likely direction of transmission between those pairs
- We restrict to pairs where we estimate the transmission took place during the trial
- We classify sources of transmission by:
 - Age
 - Sex
 - Community of residence
 - Drug resistance mutations
 - Recency of infection
- We weight the set of pairs such the recipient set is representative of the overall HIV+ population in the trial areas
Summary of recruitment

HCF
- 5,729 approached
- 55 ineligible
 - 26 withheld consent
- 5,648 samples collected
- 36 samples not received
 - 293 viral load too low
- 5,319 samples successfully sequenced

PC
- 27,467 recruited
 - 20,786 negative at end of trial
 - 5,599 baseline positive
 - 585 seroconverters
- 1,146 withheld consent
 - 2,182 not asked
- 2,856 samples collected
- 188 samples not received
 - 863 viral load too low
- 1,805 samples successfully sequenced

Summary
- 300 directed pairs (estimated infection during trial)
- 355 directed pairs (consensus of methods)
- 295 directed pairs (phyloscanner topology)
- 264 pairs (recency estimate)
- 468 probable transmission pairs
- 5,818 with sufficient coverage
- 7,124 samples
Results

3
High level first line DR
From different community
Infected < 1 year prior
Female aged 20−35
Male aged 25−40
Source risk factors

Weighted percentage

Source risk factors

- Male aged 25−40
- Female aged 20−35
- Infected < 1 year prior
- From different community
- High level first line DR
Conclusions
Conclusions

• Men aged 25-40 are responsible for 43.2% of transmissions
• Women aged 20-35 are responsible for 30.3% of transmissions
• Given prevalence, the number of new infections from young men per HIV+ young man is 2.93 times the same number for young women
• Most infections are:
 • Not from outside the community
 • Not drug-resistant
 • Not from a source who was recently infected
HIV transmission is driven by “typical” sexual interactions and control strategies must take this into account
The PANGEA-HIV consortium

Map from Dwyer-Lindgren et al., 2019
Acknowledgments

Christophe Fraser
Lucie Abeler-Dorner
David Bonsall
Tanya Golubchik
and the rest of the Fraser group

All HPTN 071 researchers, staff, participants and their families.

The 21 study communities and the religious, secular, civil and traditional leadership structures

Volunteers in the community advisory board structures

All PANGEA researchers, staff and study participants
Acknowledgments

• Overall support for the HIV Prevention Trials Network (HPTN) is provided by the National Institute of Allergy and Infectious Diseases (NIAID), Office of the Director (OD), National Institutes of Health (NIH), National Institute on Drug Abuse (NIDA), and the National Institute of Mental Health (NIMH) under Award Numbers UM1AI068619-15 (HPTN Leadership and Operations Center), UM1AI068617-15 (HPTN Statistical and Data Management Center), and UM1AI068613-15 (HPTN Laboratory Center).

• The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.