

Jorge A. Gallardo-Cartagena, MD, MPH Universidad Nacional Mayor de San Marcos On behalf of the HVTN 804/HPTN 095/A5390 study team

OA06 Monoclonals for prevention

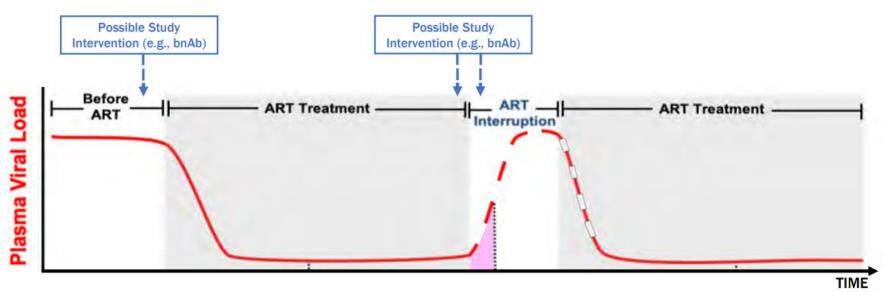
Analytical Treatment Interruption (ATI) in Peru: Stakeholder Engagement & Early Clinical Data

What is your main question?

Can durable virologic control (low or undetectable viral load) off ART be achieved among individuals with early ART initiation +/- VRCO1, close to HIV acquisition?

• Is it possible to implement an ATI in LMICs, e.g. Peru?

What did you find?


Yes, with strong local stakeholder engagement, we successfully implemented an ATI in Peru. However, we did not observe evidence of durable off-ART virologic control in our participants

Why is it important?

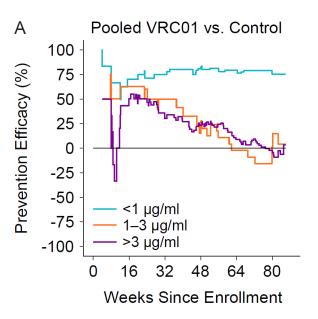
ATIs could serve as safe & effective tools for evaluating new HIV prevention & cure/remission strategies, including vaccines and monoclonal antibodies

Analytical treatment interruption (ATI)

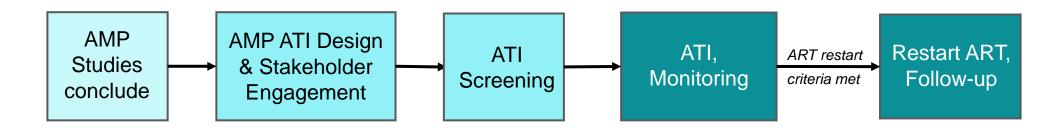
- A carefully monitored ART pause for an individual living with HIV
- Historically used as part of therapy, in hopes of minimizing ARV toxicities, addressing multiresistant virus, & treatment failure
- Now used in research to evaluate options for HIV viral suppression, including for sustained, ART free virologic remission (SVR); safe & well-tolerated "design of choice" in HIV cure research

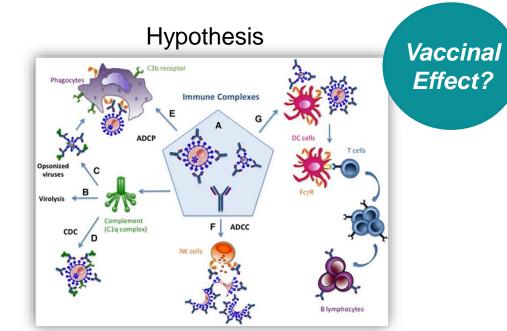
Antibody Mediated Prevention: The AMP studies

В


Sub-Saharan Africa

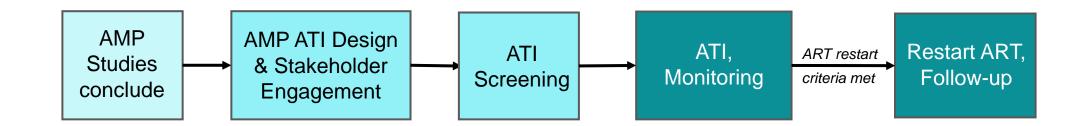
Americas/Europe AMP


Peru: 48.9% (1131/2701) ppts


Proof of concept: The mAb VRC01 showed prevention efficacy against neutralization-sensitive HIV viruses

Pre- Specified IC ₈₀ Category	Treatment Arm	No. of HIV-1 Inf.	No. of Person- Years	Rate per 100 Person Years	- PE (95% CI)										
<1 µg/ml	Control	19	2203	0.86		1									
	VRC01 Pooled	9	4427	0.20	75.4 (45.5, 88.9)							-		•	
1-3 µg/ml	Control	10	2203	0.45		ı									
	VRC01 Pooled	19	4427	0.43	4.2 (-108.7, 56.0)								_		
>3 μg/ml	Control	35	2203	1.59											
	VRC01 Pooled	70	4427	1.58	3.3 (-48.0, 36.8)			_		-		_			
					-	100 -80) -6	0 -4	0 -20	0	20	40	60	80	100

AMP ATI Design & Select Endpoints



Objectives/endpoints

To evaluate the effect of **early ART initiation**, **with or without VRC01** receipt in the immediate pre-HIV acquisition period and/or during early infection on:

- Duration of ART-free viral control
- Development of HIV-specific immune responses

AMP ATI Design & Select Endpoints

Key inclusion criteria

- Acquired HIV within 8 weeks of an AMP infusion
- Initiated ART early & remained virally suppressed for at least a year
- Meet other eligibility criteria

ART re-initiation criteria

- Viral load > 1,000 copies/mL for ≥ 4 consecutive weeks & not declining by 0.5 log from prior week.
- CD4+ T cell count < 350 cells/mm3, confirmed on a second sample.
- Any HIV-related syndrome (eg, acute retroviral syndrome, an opportunistic infection).
- Participant or provider wish to re-initiate ART.

Peru Stakeholder engagement (2019)

Multi-Stakeholder meetings with:

- Community members
- Investigators
- ART providers
- MoH officials
- Regulatory bodies (INS)

Helped to build trust, addressed misconceptions, and facilitated regulatory review

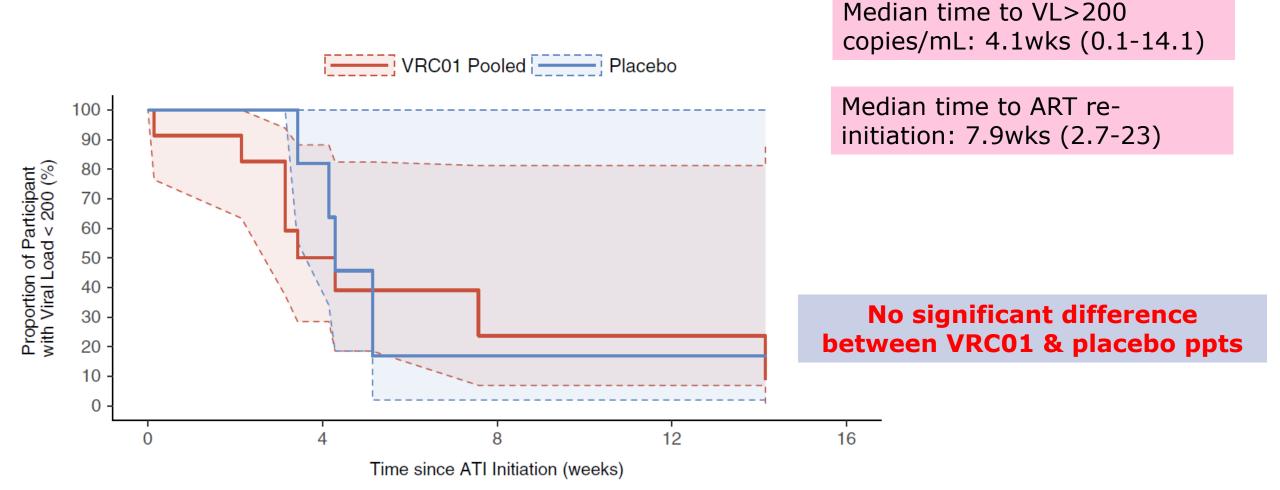


Viral load & CD4 over 64 weeks since ATI, n=17

No evidence of durable viral control

(VL < 200 copies/mL for >24 wks off ART)

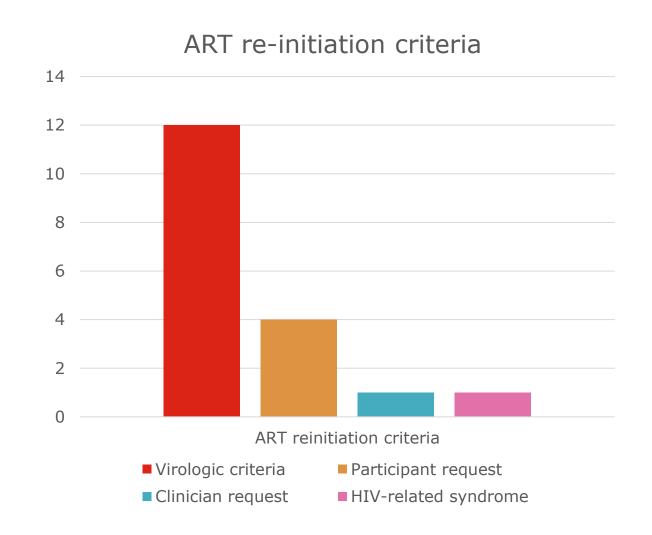
Viral load (copies/ml)



Time since ATI Initiation (weeks)

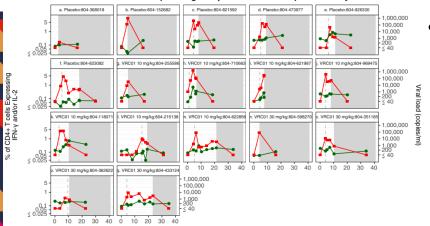
- CD 4 - Viral load

Time to VL>200 copies/mL

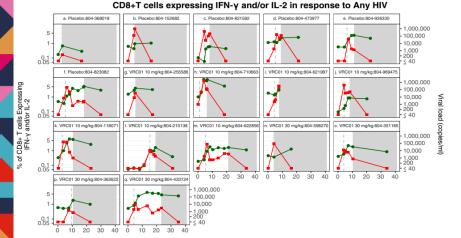


Peru AMP ATI: Clinical data

Total participants in Peru ATI: 18


- 14 MSM, 3 trans individuals, 1 gender non-binary
- No HIV transmissions
- No SAEs or AEs Grade ≥ 3
 - One ppt reported ARS
- 9 STIs in 8 ppts
- One participant with tenofovir levels compatible with ongoing ART use (excluded from analysis for virologic control; included in safety analyses)

Next steps


Figure 11.1 HVTN 804: Longitudinal Summaries of ICS Response Magnitude and Viral Load CD4+T cells expressing IFN-y and/or IL-2 in response to Any HIV

0 10 20 30 40 0 10 20 30 40

Time since ATI Initiation (weeks)

Figure 11.11 HVTN 804: Longitudinal Summaries of ICS Response Magnitude and Viral Load

- To evaluate the effect of early ART initiation +/- VRC01 on the development of anti-HIV immune responses and the potential association of those immune responses with time to ART re-initiation criteria:
 - HIV-specific CD4+ and CD8+ T-cell responses
 - Autologous & heterologous neutralizing antibody responses
 - Non-neutralizing, FcγR-mediated antibody effector functions
 - Dendritic cell activation and maturation markers
 - T- and B-cell activation and exhaustion markers

Conclusions

- The AMP ATI in Peru was successfully implemented with strong local stakeholder engagement
- We did not observe evidence of durable virologic control in our participants, nor differences on time to VL > 200 copies/mL between VRC01 & placebo recipients
- There is ongoing work to better understand the immune landscape of these participants and inform HIV vaccine development

AMP ATI Site Acknowledgements

Thank you to all the site investigators, clinic coordinators, community engagement teams, and pharmacists.

HVTN 804/HPTN 095/A5390 Sites

- Iquitos
- Lima Barranco
- Lima San Marcos
- Lima San Miguel
- Lima Via Libre

Thank you, AMP ATI participants!

AMP ATI Studies Protocol Team Acknowledgements

Chairs

- Shelly Karuna
- Katharine Bar

PTL/CMM

- Shelly Karuna
- Phil Andrew
- Azwi Takalani
- Manuel Villaran

Statisticians

Allan eCamp

Medical Officers

- · Randall Tressler
- Lydia Soto-Torres

Laboratory Leads

- John Hural
- Estelle Piwowar-Manning

CAB Members

- Mark Hubbard
- Derrick Mapp
- Angy Peter
- Maximina Jokonya

CERs

- DaShawn Usher
- Hugo Sanchez
- Charles Chasakara
- Ivy Kaunda

CEU Representative

Gail Broder

Clinic Coordinators

- Debora Dunbar
- Milagros Sabaduche
- Nitesha Jeenarain

Community Program Associate

Jonathan Lucas

CSS

Maija Anderson

Consulting Investigators

- Tae-Wook Chun
- Jorge Gallardo Cartagena
- Catherine Orrell
- Lucio Gama
- Michael Sneller
- Nyaradzo Mgodi

CTM/CRM

- Carissa Karg
- Phil Andrew

Data Management

- Alison Ayers
- April Randhawa

Ethics Representative

- Stuart Rennie
- Ames Dhai

Lab Representatives

- Lisa Sanders
- Jen Hanke
- Vanessa Cummings

PDM

- Smitha Sripathy
- Meg Trahey

Pharmacist

Justine Beck

Pharmacologist

Julie Dumond

Regional Medical Liaisons

- Azwi Takalani
- Robert De La Grecca
- Simba Takuva

Regulatory Affairs

Megan Brandon

Social Behavioral Scientist

Michele Andrasik

Statistics

- · Pei-Chun Yu
- Doug Grove
- Erika Rudnicki

