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• Suppose an exposure (or treatment) associated with rate of HIV 

acquisition in a study 

• Eg, contraceptive associated (p<.05!) with lower HIV incid.

• When can we conclude that such an association is due to 

exposure actually having an effect on HIV infection? 

• Causal inference methods provide a formal statistical framework 

for deducing casual claims from data

Causal Inference in HIV Prevention Trials



• Long history in philosophy

• Early statistical work by Neyman in 1920s, then important work by 

Rubin 1970s and Robins 1980s lead to modern era where 

commonly used approach in numerous disciplines

• Important (arguably fundamental) in epidemiology, econometrics, 

comparative effectiveness research, implementation science, 

public policy, and many other areas of research

• Books, journals, conferences, courses, software, blogs 

Causal Inference



Causal Inference in Epidemiology



• The HIV Prevention Trials Network is a worldwide collaborative 

clinical trials network that develops and tests the safety and 

efficacy of interventions designed to prevent the transmission of 

HIV

• HPTN : learn about the causal effects of interventions on safety 

and HIV transmission outcomes

HPTN is in the causal inference business



• A gentle introduction to drawing causal inference 

using data from biomedical studies 

• Cover basic ideas like potential outcomes, 

counterfactuals, confounding, propensity score, etc

• Examples from HIV prevention studies

Outline



Potential Outcomes

• Binary treatment (exposure) with values 𝐴 = 0,1

• For example, 𝐴 = 1 treatment, 𝐴 = 0 no treatment (control)

• Consider two potential outcomes

– 𝑌(1) if individual receives treatment

– 𝑌(0) if individual receives control

• Eg, 𝑌 𝑎 = 1 if individual HIV+ after 5 years for a = 0,1



Image from https://economics.mit.edu/faculty/angrist



Causal Effects

• If 𝑌 1 = 𝑌(0), then treatment has no (causal) effect 

• Otherwise, treatment has an effect

• Typically we only observe 𝑌 1 or 𝑌 0 but not both

• Eg if individual receives treatment 𝐴 = 1, we observe 𝑌 1 , and 

𝑌 0 becomes counterfactual (missing)

• Thus estimating effect at individual level generally not possible



Causal Effects

• Consider estimating effects at the population level such as 

average treatment effect 

𝐸 𝑌 1 − 𝑌 0 = 𝐸 𝑌 1 − 𝐸[𝑌 0 ]

• Interpretation:  

– Average individual-level effect of treatment

– Difference in average outcome if everyone receives treatment versus if no 

one receives treatment (two counterfactual scenarios)



Causal Effects

• Consider estimating effects at the population level such as 

average treatment effect 

𝐸 𝑌 1 − 𝑌 0 = 𝐸 𝑌 1 − 𝐸[𝑌 0 ]

• For binary outcome, consider causal RD or RR

Pr 𝑌 1 = 1 − Pr[𝑌 0 = 1] or Pr 𝑌 1 = 1 /Pr[𝑌 0 = 1]



Randomized experiments

• Suppose we randomly assign individuals to treatment 

• Treatment assignment 𝐴 is independent of 𝑌(1) and 𝑌(0)
𝐴 ⊥ 𝑌 1 , 𝑌(0)

• Denote the observed outcome by 𝑌, e.g., 𝑌 = 𝑌(1) if 𝐴 = 1

• Then 𝐸[𝑌 1 ] = 𝐸 𝑌 1 𝐴 = 1 = 𝐸[𝑌|𝐴 = 1]

• Thus can estimate 𝐸[𝑌 1 ] by the mean outcome in 

individuals randomized to treatment; likewise for 𝐸[𝑌 0 ]



Randomized experiments

• Therefore we can estimate the average treatment effect

𝐸 𝑌 1 − 𝑌 0 = 𝐸 𝑌 1 − 𝐸[𝑌 0 ]

by difference in sample means (t-test), or by fitting a simple linear 

regression model

𝐸 𝑌|𝐴 = 𝑏0 + 𝑏1 𝐴

• Upshot: causal inference straightforward in randomized trials



Randomized experiments

• Proviso: Randomized experiments often include issues like drop-

out, non-compliance, measurement error, etc



Randomized experiments

• In addition, we may be interested in secondary analyses of trial 

data where the treatment/exposure was not randomized, or in 

mediation (causal pathways)



Observational studies

• Consider study where treatment received is not randomized, so 

we are no longer willing to assume 

𝐴 ⊥ 𝑌 1 , 𝑌(0)

• Eg, 𝐴 = contraceptive, 𝑌 = incident HIV infection

• Women who are more sexually active may be more likely to use 

contraceptive (𝐴 = 1) and may also be more likely, regardless of 

treatment, to acquire HIV (𝑌 1 = 𝑌 0 = 1)



Observational studies

• Directed acyclic graphs (DAGs) often used in causal inference 

to depict assumptions

• 𝐿 sexual behavior, 𝐴 oral contraceptive, 𝑌 HIV infection

• 𝐿 confounds the association between 𝐴 and 𝑌

• In general, 𝐴 will not be independent of 𝑌(0), 𝑌(1)



Observational studies

• However, suppose we only consider women with the same sexual 

behavior

• We might be willing to assume that 𝐴 ⊥ 𝑌 1 , 𝑌 0 | 𝐿

• In other words, within strata defined by 𝐿, as-if randomized trial



Observational studies

• Key assumption

𝐴 ⊥ 𝑌 1 , 𝑌 0 | 𝐿

might be more plausible if condition on additional covariates

• Conditional on age, race, ethnicity, sexual behavior, education, etc, 

women who select OC similar to women who do not

• Conditional exchangeability, or 

no unmeasured confounders assumption



Observational studies

• Conditional exchangeability key assumption underlying most 
causal inference methods

• Within strata defined by covariates 𝐿 = (𝐿1, 𝐿2, … ), as-if 
randomized trial

• Recall: causal inference in randomized studies easy

• Implication: estimate causal effects within strata, then average 
estimates across strata

• Essential idea between many matching methods and 
standardization/g-formula



Can’t I just do multivariate regression?

• What if we fit this model?

𝐸 𝑌 𝐴, 𝐿 = 𝑏0 + 𝑏1 𝐴 + 𝑏2 𝐿

• Is 𝑏1 valid estimate of the causal effect?

• Yes, if model correct

• But model supposes effect of treatment same for all individuals, 

which will be implausible in many settings



Propensity score

• Propensity score is conditional probability individual receives 

treatment given covariates 𝑒 𝐿 = Pr[𝐴 = 1|𝐿]

• Important result. Conditional exchangeability implies

𝐴 ⊥ 𝑌 1 , 𝑌 0 | 𝑒(𝐿)

• That is, if it is sufficient to adjust/control for 𝐿, then it is sufficient to 

match/stratify by 𝑒 𝐿

• Advantageous because 𝑒 𝐿 is just a scalar



Propensity score

• Propensity score generally unknown in observational studies

• Estimate via logistic regression logit(Pr[𝐴 = 1]) = 𝑎1 + 𝑎2 𝐿

• Stratify or match individuals based on estimate propensity scores

• Estimate causal effects within strata/matches, then average over 

effect estimates



Inverse Probability Weighting

• Another common approach using propensity scores

• Estimate via logistic regression logit(Pr[𝐴 = 1]) = 𝑎1 + 𝑎2 𝐿

• Estimate 𝐸[𝑌 1 ] by weighted average of 𝑌 among treated 

individuals 𝐴 = 1 with weights 1/𝑒 𝐿

• Similarly for 𝐸[𝑌 0 ]

• Creates pseudo-population where no confounding



Other areas of causal inference

• Mediation 



Other areas of causal inference

• Mediation

• Time-varying exposures

𝐴(0) ART at visit 0

𝐿 1 CD4 at visit 1

𝐴 1 ART at visit 1



Other areas of causal inference

• Mediation 

• Time-varying exposures

• Instrumental variables: 

– 𝐼𝑉 − 𝑌 unconfounded, and 

– 𝐼𝑉 has an effect on 𝑌 only via 𝐴



Other areas of causal inference

• Mediation 

• Time-varying exposures

• Instrumental variables

• Regression discontinuity designs



Other areas of causal inference

• Mediation 

• Time-varying exposures

• Instrumental variables

• Regression discontinuity designs 

• Principal stratification

𝐷(1) indicator if person would adhere 

when assigned treatment
Adherers

Non-adherers



Casual Effects (Revisited)

• Recall causal effect definition: all 

individuals exposed vs no individuals 

exposed

• Other quantities may be more relevant from 

policy/public health perspective

• Effect of treatment in treated

• E.g., smoking



Conclusion

• Causal inference central to mission of HPTN

• Straightforward in randomized studies w/ perfect compliance, etc

• Specialized statistical methods for observational studies

– Matching, stratification/standardization

– Inverse probability weighting

• Can utilize these methods in HPTN trials with imperfect 

compliance, LTFU, exposures that were not randomized, mediation 

analysis, etc.



Causal Inference Resources

• Books (Hernan and Robins, Imbens and Rubin, …)

• Journals (Journal of Causal Inference)

• Software (SAS Proc Causaltrt, R packages, …)

• Conferences (Atlantic CI Conference, EuroCIM, …) 

• Short courses (UW SISMID July 23-25, Harvard June 4-8)

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://www.cambridge.org/core/books/causal-inference-for-statistics-social-and-biomedical-sciences/71126BE90C58F1A431FE9B2DD07938AB
https://www.degruyter.com/view/j/jci
https://support.sas.com/rnd/app/stat/procedures/causaltrt.html
https://www.cmu.edu/acic2018/
http://eurocim2018.arcolab.org/
http://www.biostat.washington.edu/suminst/sismid
https://www.hsph.harvard.edu/causal/shortcourse/


For more information or to apply for a scholarship: biostat.washington.edu/suminst

UW Biostatistics Summer Institutes Seattle

July 9-27, 2018
• Statistical Genetics

• Statistics and Modeling in Infectious Diseases

• Statistics for Clinical Research 

• Statistics in Big Data

4
Institutes

57
Short

Courses

84
Instructors
who are leading 

educators and 
researchers

900+
Participants

in 2017
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