

Analysis of Cluster Randomized Trials

Fundamental Concepts

Richard Hayes, DSc London School of Hygiene & Tropical Medicine London, UK 11 April 2017

Overview

- What are cluster randomized trials?
- Why do we do them?
- Implications for sample size and analysis
- Simple methods based on cluster summaries
- Adjusting for covariates
- Regression methods

Illustrations from HIV prevention trials

What is a cluster randomized trial?

Groups (clusters) of individuals are randomly allocated to the different treatment conditions The clusters might be:

- Towns, villages, cities
- Arbitrary geographical zones
- Schools
- Factories
- Clinics, hospitals, medical practices

Why use this design?

- Community-level interventions
- Logistical convenience/acceptability
- Avoid or reduce *contamination*

Also, for infectious disease interventions

- Capture effects on infectiousness as well as susceptibility
- Capture *mass effect* of intervening in entire population (*indirect* as well as *direct* effects)

Statistical implications of CRT design

- Observations on individuals in the same cluster are correlated
- This correlation needs to be accounted for in the *design* and *analysis*
- Sample size needs to be increased
 - Design effect = $1 + (m 1) \rho$
 - $-m = cluster size, \rho = ICC$
- Need to use analysis methods that account for correlation
- Imbalance between study arms when small number of clusters

Approaches to analysis

- Analysis of cluster-level summaries
 - Compute summary measure for each cluster: e.g. a risk, rate or mean depending on outcome
 - Compare these cluster summaries between study arms using t-test or non-parametric test
- Regression methods on individual-level data
 - Use *random effects* models to account for correlation
 - Warning: Not robust when fewer than ~15 clusters per study arm

Example: Cluster-level summaries

• Trial to increase uptake of VMMC in adult men

Example: Cluster-level summaries

	Proportion aged 25-34	GM of proportions
Intervention clusters (10)	1462/6191	17.7%
Control clusters (10)	493/3926	13.0%

t-test on log(proportion) RR: 1.36 (CI: 0.93-1.93) p = 0.11

Fig. 3. Proportion of VMMC clients aged 20-34 years in each cluster, by arm and region. VMMC, voluntary medical male circumcision.

Wambura et al, AIDS 2017

Example: Matched pairs CRT

- Mwanza STD trial
- Paired design may help improve balance and reduce between-cluster variance
- 6 pairs of rural communities
- Intervention: improved STD treatment at clinic
- Measured impact on HIV incidence in randomly selected cohort of 1000 adults in each community
- Note: cohort selected from general population, not clinic patients

Grosskurth, Lancet 1995

Example: Matched pairs CRT

	HIV baseline prevalence (%)		HIV seroconversions		Crude RR
	Intervention	Comparison	Intervention	Comparison	(95% CI)
Matched pair/stratum					
1 Rural	3.9	3.0	5/568 (0.9%)	10/702 (1.4%)	0.62
2 Islands	2.0	1.6	4/766 (0.5%)	7/833 (0-8%)	0.62
3 Roadside	6.8	8.6	17/650 (2.6%)	20/630 (3.2%)	0.82
4 Lakeshore	5.4	4.3	13/734 (1.8%)	23/760 (3.0%)	0.59
5 Lakeshore	2.8	4.7	4/732 (0.5%)	12/782 (1.5%)	0.36
6 Rural	1.8	4.5	5/699 (0.7%)	10/693 (1.4%)	0.50
Overall	3.8	4.4	48/4149 (1.2%)	82/4400 (1.9%)	0.57† (0.42-0.76)

- RR computed in each matched pair
- Crude RR computed as geometric mean across pairs = 0.57 (CI: 0.42 – 0.76)
- Paired t-test gives p = 0.004
- Non-parametric sign test gives p = 0.03 (2-sided)
- Note: some imbalance in baseline HIV prevalence

Adjusting for covariates

- Can use 2-stage approach
- Stage 1:
 - Fit regression model to individual data including covariates but NOT study arm
 - Use model to obtain *Expected* number of events (e.g. HIV seroconversions) in each cluster under null hypothesis
 - Compute O/E for each cluster (*ratio residuals*)
- Stage 2:
 - Carry out t-test (paired or unpaired) on the O/E ratio residuals

Adjusting for covariates in paired CRT

Cluster	Intervention	Control	Adj RR
1	0 ₁₁ /E ₁₁	O _{C1} /E _{C1}	(O ₁₁ /E ₁₁)/(O _{C1} /E _{C1})
2	O_{12}/E_{12}	O_{C2}/E_{C2}	(O ₁₂ /E _{i2})/(O _{C2} /E _{C2})

- Adjusting for age, sex and baseline HIV prevalence
- Adj RR = 0.39 (CI: 0.45-0.83)
- Paired t-test gives p = 0.009

Limitations of cluster summary methods

These methods have been shown to be highly robust but have a number of limitations:

- They are inconvenient as they generally involve a two-stage procedure
- They give equal weight to each cluster and so are not optimally efficient
- They do not allow the effects of intervention and other covariates (and their interactions) to be estimated together in the same regression model

Individual-level regression methods

- Random effects models and GEE are the most common approaches
- We focus on RE models here

Rates: $\log \lambda = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + u_i$ Binary: $\log \log \alpha = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + u_i$ Quantitative: $\mu = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + u_i$

where β_1 is intervention effect, β_2 ,... are covariate effects and u_i are random cluster effects (representing variation between clusters)

Example: Individual-level regression

- Comparison of two strategies of delivering HPV vaccine to schoolgirls in Tanzania
- Class-based (class 6) vs Age-based (12 years old)
- Primary outcome: HPV vaccine coverage by dose
- 134 primary schools randomly allocated to two strategies
- 3 private schools withdrew leaving 131 (67 classbased, 64 age-based)
- Analysed by Random Effects Logistic Regression

Example: Individual-level regression

	Age-based	Class-based	
Dose 1	1788/2180 82.0%	2896/3352 86.4%	Private
Dose 2	1695/2180 77.8%	2808/3352 83.8%	Govt urban
Dose 3	1572/2180 72.1%	2639/3352 78.7%	Govt rural

Dose 3

OR = 1.36 (CI: 1.02-1.82) p = 0.04

ICC = 0.13

Figure 2. Coverage for dose 3 in each school, by school type and delivery strategy. Abbreviation: Govt, government.

Watson-Jones, JID 2012

Summary

- CRTs should be analyzed using methods that allow for correlated data
- Adjustment for covariates is often needed because balance not assured unless large number of clusters
- Regression methods are not robust for CRTs with small number of clusters
- CRTs different from conventional RCTs because study cohorts do not necessarily receive intervention – they are recruited to represent the general population of the community receiving the intervention

Acknowledgements

HPTN 071 (PopART) is

- Sponsored by the National Institute of Allergy and Infectious Diseases (NIAID) under Cooperative Agreements # UM1 AI068619, UM1-AI068617, and UM1-AI068613
- Funded by:
 - The U.S. President's Emergency Plan for AIDS Relief (PEPFAR)
 - The International Initiative for Impact Evaluation (3ie) with support from the Bill & Melinda Gates Foundation
 - NIAID, the National Institute of Mental Health (NIMH), and the National Institute on Drug Abuse (NIDA) all part of the U.S. National Institutes of Health (NIH)