

Primary analysis methods

HPTN 071 (PopART)

Deborah Donnell, PhD Vaccine and Infectious Disease Division Fred Hutch, Seattle HPTN Annual Meeting 2019

PopART Intervention

CHiPs Door-To-Door Intervention

- Universal HIV counselling and testing
- VMMC referral
- PMTCT referral
- STI screening
- TB screening
- Condoms

- Cluster Randomized Trial:
 - 21 Communities randomized to 3 arms using a matched triplets design (7 triplets)
- Impact of the intervention measured in the Population Cohort (PC)
 - 2000 participants selected at random within each communities
 - Visits to participants completed each year (PC0, PC12, PC24, PC36)
- Intervention and randomization in the trial is *community level*, although HIV incidence is measured in population cohort *participants*.
 - How do analysis methods account for this multi-level design?

CHiPs Intervention

Population Cohort

ART Eligibility, Arm A

Zambia ART Eligibility, Arms B&C

SA ART Eligibility, Arms B&C

Study Timeline

Primary Outcome

- HIV Incidence (PC12-PC36)
- Compare: Arms A (Full PopART) and B (CHiPs + SoC ART) with C (SOC)
- Analytic features
 - Two stage analysis method for matched cluster-randomized trials
 - Age changing over time
 - Imputation of infection status for seroconverters not seen at PC12

• Stage 1: Individual-level to community-level summary Account for differences in community HIV incidence predicted by age, gender and baseline community HIV prevalence

• Stage 2: Analysis of community summaries Account for triplets

• Stage 1: Individual-level to community-level summary Account for differences in community HIV incidence predicted by age, gender and baseline community HIV prevalence

What value of age do we use for individuals ?

• Stage 2: Analysis of community summaries Account for Triplets

Nuance of Age in Incidence Analyses

- Age is a known predictor of HIV incidence, and *participant age changes* throughout the 4 years of the study.
- Using visit dates and birth dates, each year is split into "age-level" data for participants in the incidence analyses (Lexis expansion).
- Each participant can contribute person-time in different age groups.

• Stage 1: Individual-level to community-level summary

Account for differences in community HIV incidence predicted by age, gender and baseline community HIV prevalence

1. Predict the number of events "expected" in that community, E_{ij}

Use Poisson regression to predict HIV infection using individual (changing) age and sex, community HIV prevalence (*but not arm*).

2. Community summary: ratio of observed to predicted number of HIV infections

$$R_{ij} = \frac{O_{ij}}{E_{ij}}$$
 = "adjusted ratio-residual" {

< 1 More observed than expected > 1 Fewer observed than expected

• Stage 2: Analysis of community summaries Account for triplets

• Stage 1: Individual-level to community-level summary

Account for differences in community HIV incidence predicted by age, gender and baseline community HIV prevalence

- 1. Predict the number of events "expected" in that community , E_{ij}
 - Use a Poisson regression for HIV infection using HIV prevalence, age and sex (BUT NOT ARM). Account for person-years of observation.
- 2. Community summary: ratio of observed to predicted number of events

$$R_{ij} = \frac{O_{ij}}{E_{ij}}$$
 - "adjusted ratio-residual" $\left\{ z \right\}$

< 1 More observed than expected > 1 Fewer observed than expected

- Stage 2: Analysis of community summaries Account for triplets
 - Perform a two-way ANOVA on log adjusted ratio-residuals, using Arm and Triplet in the model.
 - t-test used to assess for differences between Arms.

Missing HIV serostatus at PC12

• Primary HIV incidence: Seroconversion between PC12 and PC36

	PC0	PC12	PC24	PC36	Seroconverters	Person Years
Complete case	\checkmark	\checkmark	\checkmark	\checkmark	505	36160
Missing PC12	\checkmark	×	\checkmark	\checkmark	67	4833
Missing PC12 and PC24	\checkmark	×	×	\checkmark	57	3355

- In primary analysis
 - Number of seroconverters omitted ~ 55
 - Number of person-years lost ~ 3,600.
- Approximately 10% of person-years omitted due to missed visits
- Use imputation to include the information from these cases

Seronegative before and after missed visit(s)

Individual	PC0	PC12	PC24	PC36
Complete case	Neg	Neg		Neg
Missing PC12	Neg			Neg
Missing PC12 and PC24	Neg		Neg	Neg

Seronegative before and after missed visit(s)

Individual	PC0	PC12	PC24	PC36
Complete case	Neg	Neg	Neg	Neg
Missing PC12	Neg	Neg	Neg	Neg
Missing PC12 and PC24	Neg	Neg	Neg	Neg

Individual	PC0 Status	PC12 Status	PC24 Status	PC36 Status
Missing PC12	Neg	•	Pos	Pos
Missing PC12 and PC24	Neg	•		Pos

Hot deck imputation

• Randomly select from **complete case data of seroconverters** matched for sex and community ("donors")

• Seroconverter with missing PC12 visit

Sex	Community	PC0 Status	PC12 Status	PC24 Status	PC36 Status
Male	5	Neg		Pos	Pos

• Complete case donors:

Sex	Community	PC0 Status	PC12 Status	PC24 Status	PC36 Status
Male	5	Neg	Pos	Pos	Pos
Male	5	Neg	Neg	Pos	Pos
Male	5	Neg	Neg	Pos	
Male	5	Neg	Neg	Pos	,
Male	5	Neg	Pos	Pos	Pos

• Seroconverter with missing PC12 visit

Sex	Community	PC0 Status	PC12 Status	PC24 Status	PC36 Status
Male	5	Neg	Neg	Pos	Pos

• Complete cases donors:

Sex	Community	PC0 Status	PC12 Status	PC24 Status	PC36 Status
Male	5	Neg	Pos	Pos	Pos
Male	5	Neg	Neg	Pos	Pos
Male	5	Neg	Neg	Pos	
Male	5	Neg	Neg	Pos	
Male	5	Neg	Pos	Pos	Pos

• Seroconverter with missing PC12 visit

Sex	Community	PC0 Status	PC12 Status	PC24 Status	PC36 Status
Male	5	Neg	Pos	Pos	Pos

• Complete cases donors:

Sex	Community	PC0 Status	PC12 Status	PC24 Status	PC36 Status	
Male	5	Neg	Pos	Pos	Pos	Random
Male	5	Neg	Neg	Pos	Pos	3616011011
Male	5	Neg	Neg	Pos		
Male	5	Neg	Neg	Pos		
Male	5	Neg	Pos	Pos	Pos	

Imputation Analysis

- Compute 20 imputation data sets, with every individual with missing HIV PC12 status imputed (no missing PC12 HIV status)
- For each of the 20 imputation datasets, perform the two-stage analysis and get estimate of intervention effect
- Intervention point estimate: mean of 20 effect estimates.
- Variance estimate: combines within and between variation from the imputation estimates
- Perform t-tests using imputation estimate and imputation variance.

PC12-PC36 Incidence Results

	Arm A Full PopART	Arm B CHiPs + SoC ART	Arm C SoC	Overall
HIV Incidence	180 / 11,998	140 / 12,780	185 / 11,382	505/36,160
Complete Cases	(1.42%)	(1.06%)	(1.60%)	
HIV Incidence	198 / 12,990	157 / 14,149	198 / 12,563	554/39,702
With Imputation	(1.45%)	(1.06%)	(1.55%)	+49/+3,542

* Incidence % is the geometric mean of community mean incidence.

PC12-PC36 Incidence Results

	Arm A Full PopART	Arm B CHiPs + SoC ART	Arm C SoC	Overall
HIV Incidence Complete Cases	180 / 11,998 (1.42%)	140 / 12,780 (1.06%)	185 / 11,382 (1.60%)	505/36,160
HIV Incidence With Imputation	198 / 12,990 (1.45%)	157 / 14,149 (1.06%)	198 / 12,563 (1.55%)	554/39702 +49/+3,542
Adjusted Rate Ratio (95% CI)	0.93 (0.74, 1.18)	0.70 (0.55 <i>,</i> 0.88)		
	7% Reduction	30% Reduction		
P-value	0.51	0.006		

* Incidence % is the geometric mean of community mean incidence.

Conclusion

- Analysis of cluster randomized trials based on the design
 - Matched triplets
 - Cluster aggregated summaries
- Even when the analysis is straightforward, attention to details and exceptions are important

Thanks to SCHARP Colleagues

- Tim Skalland
- Ethan Wilson
- Krista Yuhas
- Sahar Zangeneh

- Lei Weng
- Heather Noble
- Lynda Emel