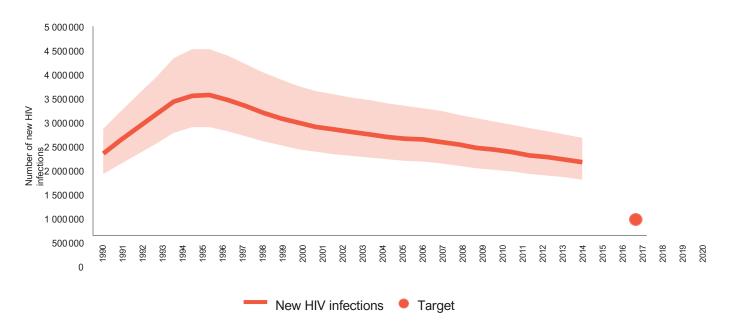


HPTN 071 (PopART) Population Effects of Antiretroviral Therapy to Reduce HIV Transmission

IMPACT OF UNIVERSAL TESTING AND TREATMENT IN ZAMBIA AND SOUTH AFRICA:
RESULTS OF A COMMUNITY-RANDOMIZED TRIAL

IAS SPECIAL SESSION

U.S. NATIONAL INSTITUTES OF HEALTH:


National Institute of Allergy and Infectious Diseases
National Institute of Mental Health
National Institute on Drug Abuse

Insufficient progress on prevention

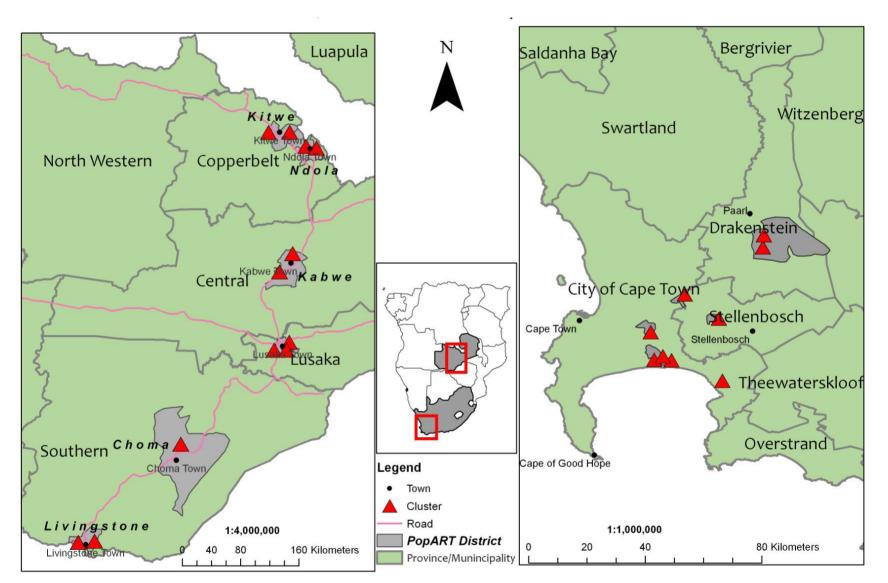
Number of new HIV infections, global, 1990–2017 and 2020 target

Source: UNAIDS 2018 estimates.

Universal testing and treatment

- All community members should test regularly for HIV and know their status (Universal testing)
- All those diagnosed HIV-positive should be offered ART (Universal treatment)
- Once established on ART and "virally suppressed", risk of transmission to partners is negligible

Undetectable = Untransmissible



PopART: What were the questions?

- Universal testing and treatment (UTT) proposed as strategy to achieve steep reductions in HIV incidence
- Can UTT be delivered in practice in generalized epidemics in sub-Saharan Africa?
- What impact on HIV incidence can actually be achieved?

21 Communities

7 per arm (A, B & C)

12 in Zambia

9 in S Africa

Total population ~1M

Study Design

Arm A

Full PopART intervention including immediate ART irrespective of CD4 count

Arm B

PopART intervention except

ART initiation according to current national guidelines

Arm C

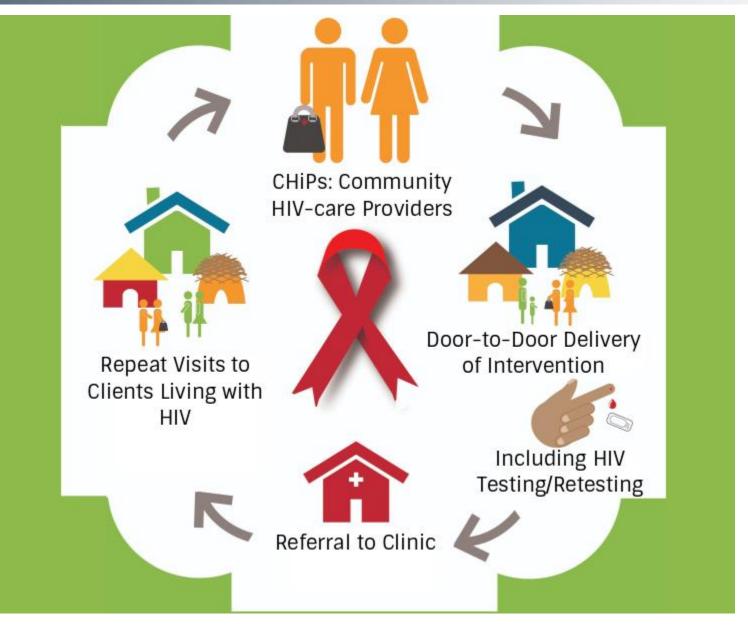
Standard of care at current service provision levels including ART initiation according to current national guidelines

Total estimated population of all 21 study communities 1 million

Primary Outcome measurement

2,500 random sample from each community (aged 18-44)

Population Cohort (N=52,500) PC

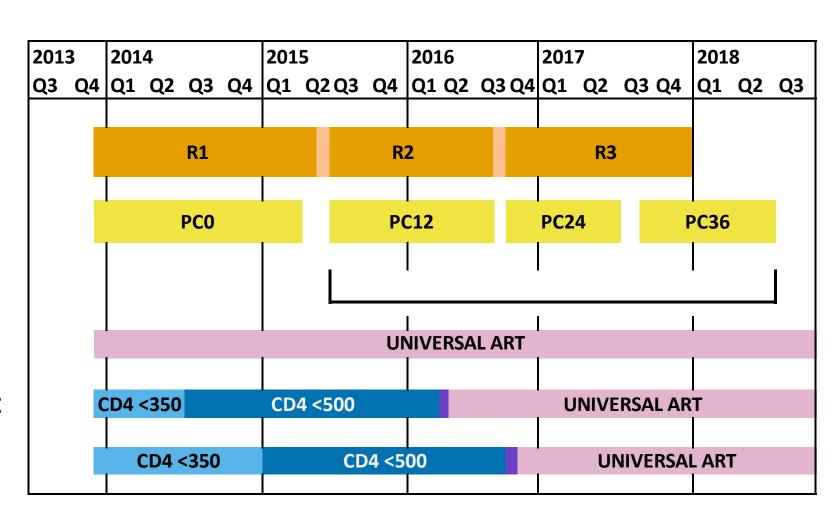

Followed up annually for 36 months

CHiPs Door-To-Door Intervention

- Universal HIV counselling and testing
- VMMC referral
- PMTCT referral
- STI screening
- TB screening
- Condoms

Study Timeline

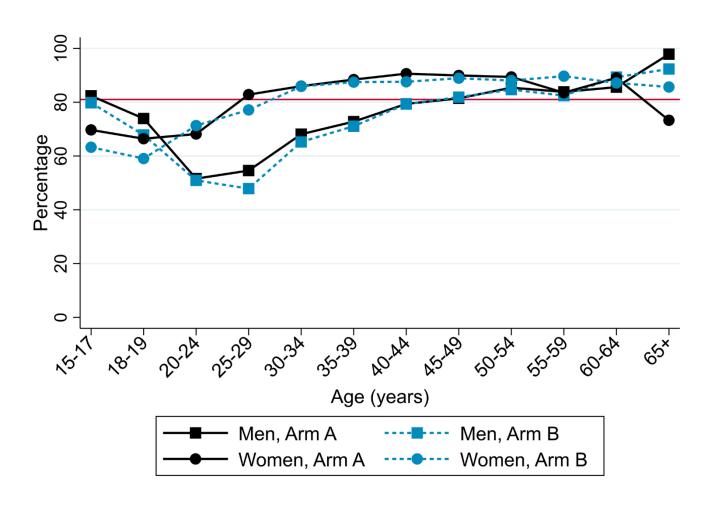
CHiPs Intervention


Population Cohort

Primary Analysis Period

ART Eligibility, Arm A

Zambia ART Eligibility, Arms B&C


SA ART Eligibility, Arms B&C

Delivery of intervention: ART coverage in arm A & B communities at end of trial

90-90 target = 81%

Overall Coverage

Arm A: 81%

Arm B: 80%

Baseline characteristics of Population Cohort (PC0)

	Arm A N = 12,671	Arm B N = 13,404	Arm C N = 12,399
Male	28%	29%	30%
Age: 18 – 24	40%	39%	40%
25 – 34	39%	39%	38%
35 – 44	21%	23%	22%
HIV Prevalence: Overall	21%	21%	22%
Men	12%	11%	12%
Women	25%	25%	27%
HSV2 Prevalence: Overall	44%	43%	46%
ART (self-reported coverage in HIV+)	33%	41%	35%
Viral suppression (HIV+; 75/community)	56%	57%	54%
Medical Male Circumcision	17%	16%	19%

Primary outcome

- HIV incidence in Population Cohort
- Between PC12 and PC36 (pre-specified)
- Time of infection imputed for seroconverters who were not seen at PC12 and/or PC24
- Impact comparing Arm A vs C, and Arm B vs C
- Using methods for matched cluster-randomized trials

Primary analysis: Incidence in PC12-PC36

	Arm A	Arm B	Arm C
HIV Incidence (geometric mean of community incidence rates)	198/12,990 (1.45%)	157/14,149 (1.06%)	198/12,563 (1.55%)
Adjusted Rate Ratio (95% CI)	0.93 (0.74, 1.18)	0.70 (0.55, 0.88)	1
Incidence compared to Arm C	7% reduction	30% reduction	
P value	0.51	0.006	

Adjusted for age category, sex and baseline community HIV prevalence. Reported numbers include imputation for PC12 and PC24 missed visits

Viral suppression at PC24

	Arm A	Arm B	Arm C
Viral suppression (Geometric mean of community %)	1531/2159 (72%)	1318/1891 (68%)	1480/2183 (60%)
Adjusted prevalence ratio (95% CI)	1.16 (0.99, 1.36)	1.08 (0.92, 1.27)	1
VS compared to Arm C	16% increase	8% increase	
P value	0.07	0.30	

Adjusted for age category, sex.

Hypotheses for Arm A vs C finding

- Poorer delivery of intervention in Arm A
- Written informed consent initially required to start ART outside local guidelines in Arm A
- Sexual risk disinhibition in Arm A if perceived risk lower
- Higher migration or mobility in Arm A communities leading to "contamination"
- Chance

Post-hoc analysis of (A + B) vs C

- Note: Interventions in Arms A and B were identical for most of the primary analysis period
- Combining arms A and B, and comparing with Arm C;
 - -RR = 0.81 (95% CI: 0.66 0.99; p = 0.04)

Evidence of a ~20% reduction in HIV incidence

PopART and the other UTT trials

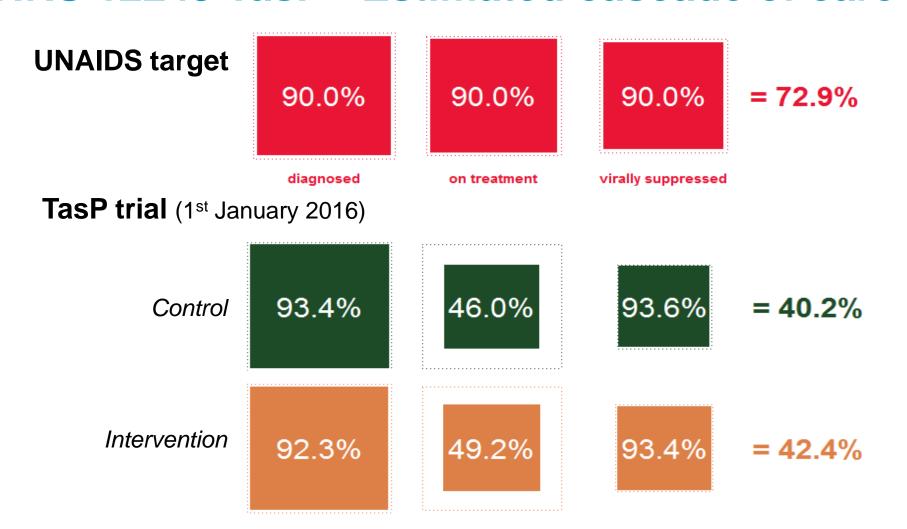
UTT trials reported previously:

- TasP (South Africa)
- SEARCH (Uganda and Kenya)
- BCPP (Botswana)

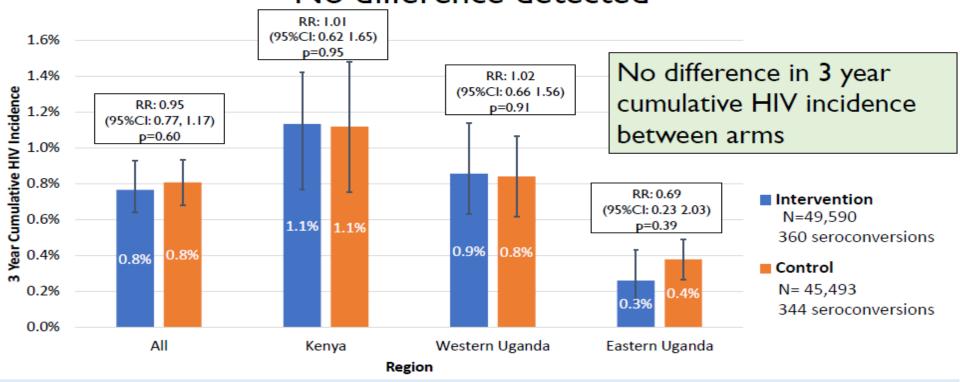
ANRS 12249 TasP: HIV incidence comparison

	Number of HIV- positive DBS tests	Person- years	Incidence for 100 person-years	95% CI
Control	268	11,787	2.27	2.00-2.55
Intervention	227	10,646	2.13	1.85-2.41
TOTAL	495	22,434	2.21	2.01-2.40

Adjusted risk ratio*


	aRR	95% CI	P-value
Intervention vs control	0.95	0.79-1.14	0.5821

^{*} Estimated with Poisson regression, adjusted on sex, age, change in national ART guidelines, baseline cluster HIV prevalence and ART coverage


ANRS 12249 TasP - Estimated cascade of care

Impact of SEARCH on Cumulative HIV incidence No difference detected

Among incidence cohort of baseline HIV-negative stable residents; 91% intervention, 91% control alive and not out-migrated by year 3; of those, 89% intervention and 90% control with HIV status measured at year 3

Primary Results: HIV Incidence in the Intervention vs. Standard of Care Arms

57 participants in the intervention arm (annualized HIV incidence: 0.59%) and 90 in the standard of care arm (annualized HIV incidence: 0.92%) acquired HIV.

Results of unadjusted and adjusted analyses of treatment effect

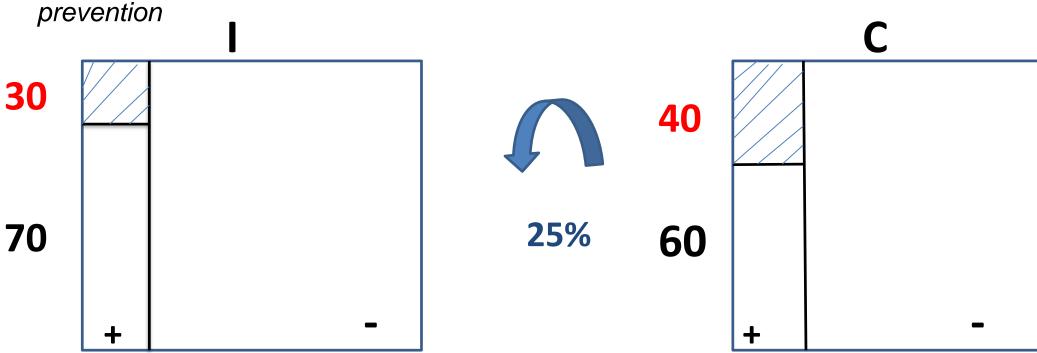
Analysis	Incidence Ratio	95% CI	2-sided p-value
Primary analysis (permutation test, pair-specific Cox PHM), unadjusted	0.69		0.09
Analysis to obtain 95% CI (standard pair-stratified Cox PHM), unadjusted	0.65	0.46-0.90	0.01
Primary analysis, adjusted*	0.62		0.04
Analysis to obtain 95% CI, adjusted*	0.70	0.50-0.99	0.04

^{*} Covariates in adjusted analyses were: sex, age, education, marital status, concurrent sexual partners, and alcohol during last sex

Results of main analyses are consistent, and indicate at least 30% reduction in HIV incidence associated with the intervention

HPTN 071 (PopART): What have we shown?

- Feasible and acceptable to deliver community-wide HIV services in urban communities with severe HIV epidemics
- PopART achieved the UNAIDS 90-90-90 targets with overall Viral Suppression of around 70% - increased from ~55% at start of trial
- Over 3 years, population-level HIV incidence was around 20% lower in Arms A and B than in Arm C
- Proportions with detectable viral load (at 24m) were ~30% in Arms A/B and ~40% in Arm C –consistent with an expected effect on HIV transmission of ~20-25%



HPTN 071 (PopART) and UTT trials

- Results of all four UTT trials are aligned with this paradigm:
- Effect on HIV transmission is consistent with the reduction in unsuppressed viral load comparing intervention and control arms

This means that the product of the three 90s is a valuable marker for delivery of treatment as
 nrevention

HPTN 071 (PopART): What have we shown?

- A sustained annual reduction in incidence of 20% would have a profound impact on the incidence curve and move us towards the UNAIDS "ending AIDS" targets
- Community-based services for universal HIV testing and linkage are a key component of combination prevention in the global effort to achieve effective HIV control.

ACKNOWLEDGEMENTS

- Sponsored by the National Institute of Allergy and Infectious Diseases (NIAID) under Cooperative Agreements # UM1 Al068619, UM1-Al068617, and UM1-Al068613
- Funded by:
 - The U.S. President's Emergency Plan for AIDS Relief (PEPFAR)
 - The International Initiative for Impact Evaluation (3ie) with support from the Bill &
 Melinda Gates Foundation
 - NIAID, the National Institute of Mental Health (NIMH), and the National Institute on Drug Abuse (NIDA) all part of the U.S. National Institutes of Health (NIH)

The HPTN 071 Study Team, led by:

Dr. Richard Hayes
Dr. Sarah Fidler
Dr. Helen Ayles
Dr. Nulda Beyers

Zambart Project

Government Agencies:

Dr. Peter Bock

BETTER TOGETHER.

PEPFAR Implementing Partners:

